Wind Turbine Pitch Angle Control Based on ANFIS

2013 ◽  
Vol 291-294 ◽  
pp. 507-512
Author(s):  
Jun Xiao ◽  
Jiang Xiao ◽  
Wei Chen

Wind turbine pitch control need a higher demand due to the random changes in wind speed, this paper proposes using adaptive neural fuzzy inference system to control wind turbine pitch, and constructs a mathematical model of the wind turbine. Consider the error between the measured and the actual value of generator speed as the input to the controller. Take a simulation analysis to the adaptive neural fuzzy inference system controller under random wind speed. The simulation results show that the adaptive neural fuzzy inference system control strategy has good robustness and dynamic performance, to improve wind turbine pitch control is feasible and effective.

2019 ◽  
Vol 44 (2) ◽  
pp. 125-141
Author(s):  
Satyabrata Sahoo ◽  
Bidyadhar Subudhi ◽  
Gayadhar Panda

This article presents a multiple adaptive neuro-fuzzy inference system-based control scheme for operation of the wind energy conversion system above the rated wind speed. By controlling the pitch angle and generator torque concurrently, the generator power and speed fluctuation can be reduced and also turbine blade stress can be minimized. The proposed neuro-fuzzy-based adaptive controller is composed of both the Takagi–Sugeno fuzzy inference system and neural network. First, a step change in wind speed and then a simulated wind speed are considered in the proposed adaptive control design. A MATLAB/Simulink model of the wind turbine system is prepared, and simulations are carried out by applying the proportional integral, fuzzy-proportional integral and the proposed adaptive controller. From the obtained results, the effectiveness of the proposed adaptive controller approach is confirmed.


2011 ◽  
pp. 56-65
Author(s):  
Ting Wang ◽  
Fabien Gautero ◽  
Christophe Sabourin ◽  
Kurosh Madani

In this paper, we propose a control strategy for a nonholonomic robot which is based on an Adaptive Neural Fuzzy Inference System. The neuro-controller makes it possible the robot track a desired reference trajectory. After a short reminder about Adaptive Neural Fuzzy Inference System, we describe the control strategy which is used on our virtual nonholonomic robot. And finally, we give the simulations’ results where the robot have to pass into a narrow path as well as the first validation results concerning the implementation of the proposed concepts on real robot.


Author(s):  
Panchand Jha

<span>Inverse kinematics of manipulator comprises the computation required to find the joint angles for a given Cartesian position and orientation of the end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network and adaptive neural fuzzy inference system techniques can be gainfully used to yield the desired results. This paper proposes structured artificial neural network (ANN) model and adaptive neural fuzzy inference system (ANFIS) to find the inverse kinematics solution of robot manipulator. The ANN model used is a multi-layered perceptron Neural Network (MLPNN). Wherein, gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that ANFIS gives better result and minimum error as compared to ANN.</span>


Sign in / Sign up

Export Citation Format

Share Document