CAD/CAM Zirconia for Dental Application

2013 ◽  
Vol 320 ◽  
pp. 505-511
Author(s):  
Ning Li ◽  
Zhi Kai Wu ◽  
Chao Jian ◽  
Wan Qian Zhao ◽  
Jia Zhen Yan

During the 20th century, both dental materials and dental technologies for the fabrication of dental prosthesis progressed remarkably. Owing to the increased demand of safety and aesthetics, 3 mol% yttria stabilized tetragonal zirconia polycrystalline has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM technique. This greatly changed the conventional dental laboratory work which is labor-intensive and experience-dependent. This review mainly introduced the state of dental zirconia and the application of CAD/CAM technology in dentistry. Key words: Dental Zirconia; CAD/CAM Technique; Mechanical Properties; Transformation Toughing; Low Temperature Aging;

2003 ◽  
Vol 18 (10) ◽  
pp. 2415-2426 ◽  
Author(s):  
J. Muñoz-Saldaña ◽  
H. Balmori-Ramírez ◽  
D. Jaramillo-Vigueras ◽  
T. Iga ◽  
G. A. Schneider

The influence of grain size and density of yttria-tetragonal zirconia polycrystals (Y-TZPs) ceramics on mechanical properties and on low-temperature aging degradation (LTD) in air and in hot water was investigated. A TZP powder containing 3 mol% Y2O3 was consolidated by slip casting and densified by the sintering/hot isostatic pressing (HIP) method. Only the presintered samples that contained less than 0.15% open porosity reached near full density after HIP. The best conditions to reach full density were found to be attained by presintering and HIP both at 1400 °C. At these conditions, some of the best mechanical properties such as modulus of rupture and Weibull modulus reached 1397 ± 153 MPa and, 10.6, respectively. These values were clearly higher than those obtained from sintered bodies and samples hot isostatically pressed at 1600 °C. Aging degradation of 3Y-TZP materials can be avoided through microstructural design. Fully dense materials with a critical grain size <0.36 μm did not show any evidence of degradation after extreme aging conditions at pressurized autoclaving in hot water at 100, 200, and 260 °C for 8 h. We propose a criterion to predict degradation in air as well as in hot water for the characterized materials based on the microstructure and density control of the samples.


1985 ◽  
Vol 60 ◽  
Author(s):  
Roger L. K. Matsumoto ◽  
B. J. McEntire

AbstractThe properties of yttria stabilized tetragonal zirconia polycrystalline ceramic fabricated from commercial powders are described. The fracture strength, fracture toughness, density, and low temperature aging effects, are studied for sintered and hot isostatically pressed ceramics. The role of alumina as an additive to the material and its influence on properties is also discussed.


Sign in / Sign up

Export Citation Format

Share Document