Hybrid Projective Synchronization of Complex Dynamical Networks with Fractional-Order System Nodes

2013 ◽  
Vol 336-338 ◽  
pp. 2365-2368
Author(s):  
Fan Di Zhang

This paper investigates the problem of hybrid projective synchronization (HPS) in dynamical networks with fractional-order hyper-chaotic system nodes. Based on the stability analysis of fractional-order systems and nonlinear control technique, we propose a novel and general approach to realize the synchronization of complex network. A nonlinear controllers are designed to make the fractional-order complex dynamical networks with distinct nodes asymptotically synchronize onto any smooth goal dynamics. Numerical simulations are presented to demonstrate the effectiveness of the proposed synchronization scheme.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


2014 ◽  
Vol 687-691 ◽  
pp. 2458-2461
Author(s):  
Feng Ling Jia

This paper investigates the projective synchronization of drive-response complex dynamical networks. Based on the stability theory for fractional-order differential equations, controllers are designed torealize the projective synchronization for complex dynamical networks. Morover, some simple synchronization conditions are proposed. Numerical simulations are presented to show the effectiveness of the proposed method.


2014 ◽  
Vol 926-930 ◽  
pp. 3046-3049
Author(s):  
Jin Ping Jia ◽  
Fan Di Zhang

This paper investigated hybrid projective synchronization of fractional order hyperchaotic systems with different orders. Based on the idea of active control and the stability theory of linear fractional-order system, we design the effective controller to realize the hybrid projective synchronization. Numerical simulation results which are carried show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order hyperchaotic systems while it also allows both the systems to remain in hyperchaotic states.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding ◽  
Yu-xia Cao

A hybrid projective synchronization scheme for two identical fractional-order chaotic systems is proposed in this paper. Based on the stability theory of fractional-order systems, a controller for the synchronization of two identical fractional-order chaotic systems is designed. This synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid projective synchronization for the fractional-order Chen chaotic system and hybrid projective synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the validity and feasibility of the proposed scheme.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Baogui Xin ◽  
Tong Chen ◽  
Yanqin Liu

We propose a fractional-order WINDMI system, as a generalization of an integer-order system developed by Sprott (2003). The considered synchronization scheme consists of identical master and slave fractional-order WINDMI systems coupled by linear state error variables. Based on the stability theory of nonlinear fractional-order systems, linear state error feedback control technique is applied to achieve chaos synchronization, and a linear control law is derived analytically to achieve synchronization of the chaotic fractional-order WINDMI system. Numerical simulations validate the main results of this work.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Song Zheng

This paper investigates the projective synchronization (PS) of drive-response time-varying coupling complex dynamical networks with time delay via an adaptive-impulsive controlling method, in which the weights of links are time varying. Based on the stability analysis of impulsive control system, sufficient conditions for the PS are derived, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects, is designed. Numerical simulations are performed to verify the correctness and effectiveness of theoretical result.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Baogui Xin ◽  
Tong Chen

Based on linear feedback control technique, a projective synchronization scheme ofN-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chunde Yang ◽  
Hao Cai ◽  
Ping Zhou

A modified function projective synchronization for fractional-order chaotic system, called compound generalized function projective synchronization (CGFPS), is proposed theoretically in this paper. There are one scaling-drive system, more than one base-drive system, and one response system in the scheme of CGFPS, and the scaling function matrices come from multidrive systems. The proposed CGFPS technique is based on the stability theory of fractional-order system. Moreover, we achieve the CGFPS between three-driver chaotic systems, that is, the fractional-order Arneodo chaotic system, the fractional-order Chen chaotic system, and the fractional-order Lu chaotic system, and one response chaotic system, that is, the fractional-order Lorenz chaotic system. Numerical experiments are demonstrated to verify the effectiveness of the CGFPS scheme.


2014 ◽  
Vol 926-930 ◽  
pp. 1939-1942 ◽  
Author(s):  
Feng Ling Jia

In this paper, the function projective synchronization of complex dynamical networks is investigated. Based on the stability theory for fractional-order differential equations, an effective control scheme is proposed to achieve function projective synchronization for complex dynamical networks. Corresponding numerical simulations are presented to show the effectiveness of the proposed synchronization criteria.


Sign in / Sign up

Export Citation Format

Share Document