NSCT-Based Multi-Sensor Image Fusion Algorithm

2013 ◽  
Vol 347-350 ◽  
pp. 3212-3216
Author(s):  
Hai Feng Tan ◽  
Wen Jie Zhao ◽  
De Jun Li ◽  
Tian Wen Luo

Against the defects that the favoritism method and average method in the multi-sensor image fusion are apt to impair the image contrast, an image fusion algorithm based on NSCT is proposed. Firstly, this algorithm applied NSCT to the rectified multi-sensor images from the same scene, then different fusion strategies were adopted to fuse the low-frequency and high-frequency directional sub-band coefficients respectively: regional energy adaptive weighted method was used for low-frequency sub-band coefficient; the directional sub-band coefficient adopted a regional-energy-matching program that combined weighted average method and selection method. Finally, the fusion image was obtained by NSCT inverse transformation. Experiments were conducted to IR and visible light image and multi-focus image respectively. And the fusion image was evaluated objectively. The experimental results show that the fusion image obtained through this algorithm has better subjective visual effects and objective quantitative indicators. It is also superior to the traditional fusion method.

2014 ◽  
Vol 687-691 ◽  
pp. 3656-3661
Author(s):  
Min Fen Shen ◽  
Zhi Fei Su ◽  
Jin Yao Yang ◽  
Li Sha Sun

Because of the limit of the optical lens’s depth, the objects of different distance usually cannot be at the same focus in the same picture, but multi-focus image fusion can obtain fusion image with all goals clear, improving the utilization rate of the image information ,which is helpful to further computer processing. According to the imaging characteristics of multi-focus image, a multi-focus image fusion algorithm based on redundant wavelet transform is proposed in this paper. For different frequency domain of redundant wavelet decomposition, the selection principle of high-frequency coefficients and low-frequency coefficients is respectively discussed .The fusion rule is that,the selection of low frequency coefficient is based on the local area energy, and the high frequency coefficient is based on local variance combining with matching threshold. As can be seen from the simulation results, the method given in the paper is a good way to retain more useful information from the source image , getting a fusion image with all goals clear.


2013 ◽  
Vol 401-403 ◽  
pp. 1381-1384 ◽  
Author(s):  
Zi Juan Luo ◽  
Shuai Ding

t is mostly difficult to get an image that contains all relevant objects in focus, because of the limited depth-of-focus of optical lenses. The multifocus image fusion method can solve the problem effectively. Nonsubsampled Contourlet transform has varying directions and multiple scales. When the Nonsubsampled contourlet transform is introduced to image fusion, the characteristics of original images are taken better and more information for fusion is obtained. A new method of multi-focus image fusion based on Nonsubsampled contourlet transform (NSCT) with the fusion rule of region statistics is proposed in this paper. Firstly, different focus images are decomposed using Nonsubsampled contourlet transform. Then low-bands are integrated using the weighted average, high-bands are integrated using region statistics rule. Next the fused image will be obtained by inverse Nonsubsampled contourlet transform. Finally the experimental results are showed and compared with those of method based on Contourlet transform. Experiments show that the approach can achieve better results than the method based on contourlet transform.


Author(s):  
GAURAV BHATNAGAR ◽  
Q. M. JONATHAN WU

In this paper, a novel image fusion algorithm based on framelet transform is presented. The core idea is to decompose all the images to be fused into low and high-frequency bands using framelet transform. For fusion, two different selection strategies are developed and used for low and high-frequency bands. The first strategy is adaptive weighted average based on local energy and is applied to fuse the low-frequency bands. In order to fuse high-frequency bands, a new strategy is developed based on texture while exploiting the human visual system characteristics, which can preserve more details in source images and further improve the quality of fused image. Experimental results demonstrate the efficiency and better performance than existing image fusion methods both in visual inspection and objective evaluation criteria.


2012 ◽  
Vol 239-240 ◽  
pp. 229-232
Author(s):  
Chen Ding

Information redundancy and complementarity are existing between the images obtained by multi-sensor, image fusion can improve the certainty and reliability of the information. Traditional method of image fusion based on multiresolution decomposition is susceptible to high frequency noise, fusion is often ineffective. A image fusion algorithm has been studied based on the wavelet multiresolution decomposition which is regional energy maximum for low-frequency decomposition image, and the bivariate statistical model for high-frequency part. The results show that: in the conditions of Daubechies 3 wavelet basis function, decomposition level 5 multiresolution decomposition, the bivariate statistical model for the high-frequency band is robust to noise based on the joint probability of wavelet coefficient pair - a wavelet coefficient and its parent; in the same time, the regional energy maximum for low-frequency band can be effective on the high-frequency band based on the bivariate statistical model. The fusion image has the biggish contrast, the preferable details, the higher gray level resolution.


2017 ◽  
Vol 11 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Yan Sun ◽  
Ling Jiang

This paper puts forward a new color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform for the purpose of removing uncertainty when choosing sub-band coefficients in the smooth regions. Luminance component is the weighted average of the three color channels in the IHS color space and it is not sensitive to noise. According to the characteristics, luminance component was chosen as the measurement to calculate the focus degree. After separating the luminance component and spectrum component, Fisher classification and fuzzy theory were chosen as the fusion rules to conduct the choice of the coefficients after the dual-tree complex wavelet transform. So fusion color image could keep the natural color information as much as possible. This method could solve the problem of color distortion in the traditional algorithms. According to the simulation results, the proposed algorithm obtained better visual effects and objective quantitative indicators.


2013 ◽  
Vol 433-435 ◽  
pp. 306-309 ◽  
Author(s):  
Yan Hai Wu ◽  
Di Yan ◽  
Meng Xin Ma ◽  
Nan Wu

A modified compressive sensing image fusion algorithm is proposed in this paper that is based on the NSCT transform. The algorithm is improved by introducing the theory of compressive sensing into image fusion that uses the NSCT transform to make a specific image be sparse on which only the high frequency coefficient is specifically measured; The improved algorithm then process the image fusion by retrieving the maximal value of the gradient of the neighborhood average from the measured high frequency coefficient, and accordingly, maximizing the absolute value of the neighborhood variance to the low-frequency counterpart. Afterwards, the improved algorithm can reconfigure the fusion image by using the MSP reconfiguration algorithm with final deliverable of the fusion image by committing to the NSCT reverse transform. Simulation results show that the improved algorithm is superior to other hand-on algorithms both in visual effect and in objective evaluation. In the case that the storage and transmission data are limited, the algorithm comes forth better effect of image fusion that is verified to be possesses of high value in practice.


2019 ◽  
Vol 28 (4) ◽  
pp. 505-516
Author(s):  
Wei-bin Chen ◽  
Mingxiao Hu ◽  
Lai Zhou ◽  
Hongbin Gu ◽  
Xin Zhang

Abstract Multi-focus image fusion means fusing a completely clear image with a set of images of the same scene and under the same imaging conditions with different focus points. In order to get a clear image that contains all relevant objects in an area, the multi-focus image fusion algorithm is proposed based on wavelet transform. Firstly, the multi-focus images were decomposed by wavelet transform. Secondly, the wavelet coefficients of the approximant and detail sub-images are fused respectively based on the fusion rule. Finally, the fused image was obtained by using the inverse wavelet transform. Among them, for the low-frequency and high-frequency coefficients, we present a fusion rule based on the weighted ratios and the weighted gradient with the improved edge detection operator. The experimental results illustrate that the proposed algorithm is effective for retaining the detailed images.


2014 ◽  
Vol 989-994 ◽  
pp. 3734-3737
Author(s):  
Li Kun Liu ◽  
Zong Jia Wu

Image fusion can be effectively utilized to obtain image redundant information from sensors, hereby improving the accuracy and reliability of information. Based on multi-resolution decomposition of the traditional image fusion method is vulnerable to high frequency noise, fusion is often ineffective. An improved image fusion algorithm has been studied based on the wavelet multi-resolution decomposition. The principle of the algorithm is regional energy maximum for low frequency decomposition image, and the bivariate statistical model for high frequency part. Experimental results show that the bivariate statistical model for the high frequency band is robust to noise based on the joint probability of wavelet coefficient in the conditions of Daubechies wavelet basis function with decomposing level 5 multi-resolution decomposition. Simultaneously, the regional energy maximum for low frequency band can be effective on the high frequency band based on the bivariate statistical model. Fusion image have a larger contrast, the preferred details and the higher gray level resolution.


2012 ◽  
Vol 542-543 ◽  
pp. 1011-1018
Author(s):  
Zheng Hong Deng ◽  
Mei Jing Wang ◽  
Xiao Ping Bai

This paper proposes a multi-focus image fusion algorithm based on contrast ratio and discrete wavelet frame transform. Firstly, this algorithm uses wavelet transform to perform the wavelet decomposition of the source image, and then obtains the high-frequency sub-band coefficients after the discrete wavelet frame transform to reflect the details of the image, finally, gets the fusion image obtained by wavelet reconstruction. Using evaluation indicators of information entropy, standard deviation, average gradient and spatial frequency, it objectively evaluates the fusion quality of this algorithm. The experimental results show that the quality and effect of the fusion image derived from the algorithm are significantly improved.


Sign in / Sign up

Export Citation Format

Share Document