AN IMAGE FUSION FRAMEWORK BASED ON HUMAN VISUAL SYSTEM IN FRAMELET DOMAIN

Author(s):  
GAURAV BHATNAGAR ◽  
Q. M. JONATHAN WU

In this paper, a novel image fusion algorithm based on framelet transform is presented. The core idea is to decompose all the images to be fused into low and high-frequency bands using framelet transform. For fusion, two different selection strategies are developed and used for low and high-frequency bands. The first strategy is adaptive weighted average based on local energy and is applied to fuse the low-frequency bands. In order to fuse high-frequency bands, a new strategy is developed based on texture while exploiting the human visual system characteristics, which can preserve more details in source images and further improve the quality of fused image. Experimental results demonstrate the efficiency and better performance than existing image fusion methods both in visual inspection and objective evaluation criteria.

2013 ◽  
Vol 433-435 ◽  
pp. 306-309 ◽  
Author(s):  
Yan Hai Wu ◽  
Di Yan ◽  
Meng Xin Ma ◽  
Nan Wu

A modified compressive sensing image fusion algorithm is proposed in this paper that is based on the NSCT transform. The algorithm is improved by introducing the theory of compressive sensing into image fusion that uses the NSCT transform to make a specific image be sparse on which only the high frequency coefficient is specifically measured; The improved algorithm then process the image fusion by retrieving the maximal value of the gradient of the neighborhood average from the measured high frequency coefficient, and accordingly, maximizing the absolute value of the neighborhood variance to the low-frequency counterpart. Afterwards, the improved algorithm can reconfigure the fusion image by using the MSP reconfiguration algorithm with final deliverable of the fusion image by committing to the NSCT reverse transform. Simulation results show that the improved algorithm is superior to other hand-on algorithms both in visual effect and in objective evaluation. In the case that the storage and transmission data are limited, the algorithm comes forth better effect of image fusion that is verified to be possesses of high value in practice.


Author(s):  
Vanitha Kamarthi ◽  
D. Satyanarayana ◽  
M.N. Giri Prasad

Background: Image fusion has been grown as an effectual method in diseases related diagnosis schemes. Methods: In this paper, a new method for combining multimodal medical images using spatial frequency motivated parameter-adaptive PCNN (SF-PAPCNN) is suggested. The multi-modal images are disintegrated into frequency bands by using decomposition NSST. The coefficients of low frequency bands are selected using maximum rule. The coefficients of high frequency bands are combined by SF-PAPCNN. Results: The fused medical images is obtained by applying INSST to above coefficients. Conclusion: The quality metrics such as entropy ENT, fusion symmetry FS, deviation STD, mutual information QMI and edge strength QAB/F are used to validate the efficacy of suggested scheme.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


2021 ◽  
Vol 12 (4) ◽  
pp. 78-97
Author(s):  
Hassiba Talbi ◽  
Mohamed-Khireddine Kholladi

In this paper, the authors propose an algorithm of hybrid particle swarm with differential evolution (DE) operator, termed DEPSO, with the help of a multi-resolution transform named dual tree complex wavelet transform (DTCWT) to solve the problem of multimodal medical image fusion. This hybridizing approach aims to combine algorithms in a judicious manner, where the resulting algorithm will contain the positive features of these different algorithms. This new algorithm decomposes the source images into high-frequency and low-frequency coefficients by the DTCWT, then adopts the absolute maximum method to fuse high-frequency coefficients; the low-frequency coefficients are fused by a weighted average method while the weights are estimated and enhanced by an optimization method to gain optimal results. The authors demonstrate by the experiments that this algorithm, besides its simplicity, provides a robust and efficient way to fuse multimodal medical images compared to existing wavelet transform-based image fusion algorithms.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 165
Author(s):  
M Shyamala Devi ◽  
P Balamurugan

Image processing technology requires moreover the full image or the part of image which is to be processed from the user’s point of view like the radius of object etc. The main purpose of fusion is to diminish dissimilar error between the fused image and the input images. With respect to the medical diagnosis, the edges and outlines of the concerned objects is more important than extra information. So preserving the edge features of the image is worth for investigating the image fusion. The image with higher contrast contains more edge-like features. Here we propose a new medical image fusion scheme namely Local Energy Match NSCT based on discrete contourlet transformation, which is constructive to give the details of curve edges. It is used to progress the edge information of fused image by dropping the distortion. This transformation lead to crumbling of multimodal image addicted to finer and coarser details and finest details will be decayed into unusual resolution in dissimilar orientation. The input multimodal images namely CT and MRI images are first transformed by Non Sub sampled Contourlet Transformation (NSCT) which decomposes the image into low frequency and high frequency elements. In our system, the Low frequency coefficient of the image is fused by image averaging and Gabor filter bank algorithm. The processed High frequency coefficients of the image are fused by image averaging and gradient based fusion algorithm. Then the fused image is obtained by inverse NSCT with local energy match based coefficients. To evaluate the image fusion accuracy, Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Correlation Coefficient parameters are used in this work .


2013 ◽  
Vol 457-458 ◽  
pp. 736-740 ◽  
Author(s):  
Nian Yi Wang ◽  
Wei Lan Wang ◽  
Xiao Ran Guo

In this paper, a new image fusion algorithm based on discrete wavelet transform (DWT) and spiking cortical model (SCM) is proposed. The multiscale decomposition and multi-resolution representation characteristics of DWT are associated with global coupling and pulse synchronization features of SCM. Two different fusion rules are used to fuse the low and high frequency sub-bands respectively. Maximum selection rule (MSR) is used to fuse low frequency coefficients. As to high frequency subband coefficients, spatial frequency (SF) is calculated and then imputed into SCM to motivate neural network. Experimental results demonstrate the effectiveness of the proposed fusion method.


2014 ◽  
Vol 687-691 ◽  
pp. 3656-3661
Author(s):  
Min Fen Shen ◽  
Zhi Fei Su ◽  
Jin Yao Yang ◽  
Li Sha Sun

Because of the limit of the optical lens’s depth, the objects of different distance usually cannot be at the same focus in the same picture, but multi-focus image fusion can obtain fusion image with all goals clear, improving the utilization rate of the image information ,which is helpful to further computer processing. According to the imaging characteristics of multi-focus image, a multi-focus image fusion algorithm based on redundant wavelet transform is proposed in this paper. For different frequency domain of redundant wavelet decomposition, the selection principle of high-frequency coefficients and low-frequency coefficients is respectively discussed .The fusion rule is that,the selection of low frequency coefficient is based on the local area energy, and the high frequency coefficient is based on local variance combining with matching threshold. As can be seen from the simulation results, the method given in the paper is a good way to retain more useful information from the source image , getting a fusion image with all goals clear.


2011 ◽  
Vol 204-210 ◽  
pp. 1419-1422 ◽  
Author(s):  
Yong Yang

Image fusion is to combine several different source images to form a new image by using a certain method. Recent studies show that among a variety of image fusion algorithms, the wavelet-based method is more effective. In the wavelet-based method, the key technique is the fusion scheme, which can decide the final fused result. This paper presents a novel fusion scheme that integrates the wavelet decomposed coefficients in a quite separate way when fusing images. The method is formed by considering the different physical meanings of the coefficients in both the low frequency and high frequency bands. The fused results were compared with several existing fusion methods and evaluated by three measures of performance. The experimental results can demonstrate that the proposed method can achieve better performance than conventional image fusion methods.


2013 ◽  
Vol 347-350 ◽  
pp. 3212-3216
Author(s):  
Hai Feng Tan ◽  
Wen Jie Zhao ◽  
De Jun Li ◽  
Tian Wen Luo

Against the defects that the favoritism method and average method in the multi-sensor image fusion are apt to impair the image contrast, an image fusion algorithm based on NSCT is proposed. Firstly, this algorithm applied NSCT to the rectified multi-sensor images from the same scene, then different fusion strategies were adopted to fuse the low-frequency and high-frequency directional sub-band coefficients respectively: regional energy adaptive weighted method was used for low-frequency sub-band coefficient; the directional sub-band coefficient adopted a regional-energy-matching program that combined weighted average method and selection method. Finally, the fusion image was obtained by NSCT inverse transformation. Experiments were conducted to IR and visible light image and multi-focus image respectively. And the fusion image was evaluated objectively. The experimental results show that the fusion image obtained through this algorithm has better subjective visual effects and objective quantitative indicators. It is also superior to the traditional fusion method.


Sign in / Sign up

Export Citation Format

Share Document