Study on Geometric Tolerances Information in Integrated Manufacturing Processes

2010 ◽  
Vol 37-38 ◽  
pp. 1292-1295
Author(s):  
Yan Chao ◽  
Hai Feng Zhang ◽  
Li Qun Wu

Tolerance information plays a critical role in many steps of the product life cycle. It is especially important due to the advances in Internet technologies and increasing integration requirements from industry. In this paper, geometric tolerances information in manufacturing process (IMP) is studied, and the layered conformance level of geometric tolerances is established according to ASME Y14.5-1994, STEP and DMIS. An EXPRESS-G data model of geometric tolerance information in IMP is established. The XML language is used to represent and program the geometric tolerances information in IMP.

2021 ◽  
Vol 8 ◽  
Author(s):  
Staci J. Kearney ◽  
Amanda Lowe ◽  
Jochen K. Lennerz ◽  
Anil Parwani ◽  
Marilyn M. Bui ◽  
...  

Manufacturers of pathology imaging devices and associated software engage regulatory affairs and clinical affairs (RACA) throughout the Total Product Life Cycle (TPLC) of regulated products. A number of manufacturers, pathologists, and end users are not familiar with how RACA involvement benefits each stage of the TPLC. RACA professionals are important contributors to product development and deployment strategies because these professionals maintain an understanding of the scientific, technical, and clinical aspects of biomedical product regulation, as well as the relevant knowledge of regulatory requirements, policies, and market trends for both local and global regulations and standards. Defining a regulatory and clinical strategy at the beginning of product design enables early evaluation of risks and provides assurance that the collected evidence supports the product's clinical claims (e.g., in a marketing application), its safe and effective use, and potential reimbursement strategies. It is recommended to involve RACA early and throughout the TPLC to assist with navigating changes in the regulatory environment and dynamic diagnostic market. Here we outline how various stakeholders can utilize RACA to navigate the nuanced landscape behind the development and use of clinical diagnostic products. Collectively, this work emphasizes the critical importance of RACA as an integral part of product development and, thereby, sustained innovation.


Author(s):  
V Borja ◽  
R Bell ◽  
J A Harding

The data model driven approach argues that computer aided engineering systems should be based on information data models in order to properly support the concurrent design of products. These models are the foundation for database representations of products and factories, and enable information sharing across unlinked software applications that address different stages of the product life cycle. This paper presents a product data model capable of capturing product life cycle information, and in particular its utilization for representing manufacturing information is described. A manufacturing data model that depicts the capabilities of manufacturing cells in terms of their processes and resources is also introduced. The potential benefits of using these data models to support design for manufacture are shown through a case study. The case study includes implementation of the models, their utilization representing a product and three manufacturing facilities, and demonstrates their value in the redesign of a component.


Author(s):  
Ahmed J. Alsaffar ◽  
Karl R. Haapala ◽  
Kyoung-Yun Kim ◽  
Gül E. Okudan Kremer

Interest in accounting for environmental impacts of products, processes, and systems during the design phase is increasing. Numerous studies have undertaken investigations for reducing environmental impacts across the product life cycle. Efforts have also been launched to quantify such impacts more accurately. Energy consumption and carbon footprint are among the most frequently adopted and investigated environmental performance metrics. The purpose of this paper is to serve two objectives — first, it provides a review of recent developments for carbon footprint reduction in manufacturing processes and supply chain operations. Second, a future vision is shared toward developing a method for reducing carbon footprint through simultaneous consideration of manufacturing processes and supply chain activities. The approach is demonstrated by developing analytical models for alternative manufacturing processes and supply chain networks associated in the manufacture of a bicycle pedal plate to realize its potential in assessing energy and GHG (greenhouse gas) emissions. The sustainable design and manufacturing research community should benefit from the review presented. In addition, a point of departure for concurrent consideration of multiple stages of the product life cycle for environmental performance is established for the research community to move current efforts forward in pursuit of environmental, economic, and social sustainability.


Sign in / Sign up

Export Citation Format

Share Document