Laser Transmission Technology of Laser Additive Manufacturing

2013 ◽  
Vol 380-384 ◽  
pp. 4315-4318
Author(s):  
Kai Zhang ◽  
Xiao Feng Shang ◽  
Lei Wang

The laser additive manufacturing technology is a laser assisted direct metal manufacturing process. This process offers the ability to make a metal component directly from CAD drawings. The manufacturing equipment consists of some components. Among them, the laser transmission component plays an important role in the whole fabricating process. It provides the energy source to melt the metal powder, so it is necessary to develop the laser transmission technology. This technology is achieved primarily by laser generator system and optical path transmission system. The related structure design and function implementation prove that the laser transmission technology can generate desirable laser power at precise assigned position, and complete the manufacturing process with flying colors.

Author(s):  
Li Zongshu ◽  
Liu Wentao ◽  
Yang Songtao ◽  
Hao Ruotong

Nozzles of fuel assembly play an important role in pressure water reactor (PWR) fuel assembly element. For a long time, ordinary processing technologies of nozzles of fuel assembly have the problems of difficult and complicated process, the low availability of material and long the development cycles of manufacturing. However, according to the study these issues can be well settled by using the additive manufacturing technology. This paper studies a nozzle of fuel assembly prepared by this additive manufacturing technology through slow-strain-rate tension (SSRT) test and microstructure observation experiment. The results of SSRT test show that yield strength of the nozzle of fuel assembly is about 401.5MPa, the extensional rigidity is about 673.5MPa and the ductility is about 45.7%. And the SEM fracture results of the SSRT sample indicate that the fracture microstructure contains a large number of dimples, and the way of fracture belongs to plastic. And the metallographic observation consequences manifest that the microstructure of nozzle of fuel assembly prepared by the additive manufacturing technology is composite tissue of both austenite and ferrite, and the grains are settled along the way of laser scanning and there are isometric with some kind of direction. This metallographic microstructure is different from the traditional morphology of the free carbide distributed in the matrix. The dual phase microstructure of austenite and ferrite can improve the mechanical properties of the matrix effectively, and avoid the free carbides which may lead to matrix fragmentation in the tensile deformation process. Moreover, the laser power could affect the microstructure and properties of nozzles of fuel assembly observably, and the high laser power could bring about the ablation of metal. Through the analysis of mechanical properties and microstructure, we have made it possible to make the laser additive manufacturing technology to be used for the fuel assembly nozzle preparation in the nuclear power area. This work not only presents the advantages of the laser additive manufacturing technology in the fuel element processing area of the nuclear power station, but also broadens the application range of the laser additive manufacturing technology. What’s more we provide the new thoughts for the fast and effective preparation of the fuel element especially for the fuel assembly nozzle in the nuclear power station.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


Author(s):  
Mastura Mohammad Taha ◽  
Ridhwan Jumaidin ◽  
Nadlene M. Razali ◽  
Syahibudil Ikhwan Abdul Kudus

Fused filament fabrication (FFF) has been developed in additive manufacturing technology as a fast and simple manufacturing process in product design. Advantage of the process such as flexibility in terms of the materials employment has attracted many researchers to develop new materials for the feed stock filament in the heat extrusion process of FFF. Green materials or bio-composites materials have been found in FFF and successfully commercialized in the market. However, a deep research should have been performed prior the application because of the unique characteristics of the material itself. The challenge for the researchers to develop bio-composite materials as the filament in FFF technology is to determine the right composition of the composites with the right thermal, mechanical, and rheological properties. Therefore, in this study, a review has been conducted to highlight the important requirements of the process and materials. Green materials such as bio-composites have a great potential in the FFF technology and could improve the sustainability impact.


2014 ◽  
Vol 24 (9) ◽  
pp. 2729-2736 ◽  
Author(s):  
Ting-ting QIAN ◽  
Dong LIU ◽  
Xiang-jun TIAN ◽  
Chang-meng LIU ◽  
Hua-ming WANG

Author(s):  
Toufik Tamsaout ◽  
Karim Kheloufi ◽  
El Hachemi Amara ◽  
Nana Kwamina Arthur ◽  
Sisa Pityana

Sign in / Sign up

Export Citation Format

Share Document