Wear Particle Characterization and Severity Evaluation of Perodua Myvi 1.3L Automatic Transmission (AT) Fluid

2013 ◽  
Vol 393 ◽  
pp. 913-918
Author(s):  
Syazuan Abdul Latip ◽  
Salmiah Kasolang ◽  
Siti Khadijah Alias ◽  
Amirul Abd Rashid ◽  
Abdul Hakim Abdullah ◽  
...  

s. This paper investigates the characteristic and severity level of both wear and wear particles occurred in Perodua MyVi 1300cc automatic transmission (AT) mechanism via wear particle analysis approach. The analyses deployed were based on ferrographic and surface roughness analysis. The work of analysis strictly conducted on automatic transmission fluid (ATF) Perodua original equipment manufacturer (OEM) (ATF-3) series via continuous endurance dynamometer basis at the operating speed of 3000rpm. The operating mileage tested ranged from 0km up to 10,000km maximum operating distance. The wear particle generated at each operating mileage of 1,500km, 3,000km, 4,500km, 7,000km and 10,000km was accordingly analyzed morphologically and qualitatively. Ferrographic analysis is by principal has been recognized as one of the most reliable analysis incorporated with wear particle analysis (WPA) concern [1]. In concern of this study, it is applied to examine the morphology, mode and characteristic of wear particles generated. The surface roughness analysis meanwhile conducted to qualitatively evaluate and predict the wear condition of components within the AT mechanism via qualitative surface texture analysis of the wear particles. The outcome from the investigation done on the wear particles surface characteristics could interpret the wear behaviour and progress (stage/phase) as the surface characteristics of the wear particles do depict the surface characteristics of the wear components [2, 3].

Author(s):  
Meizhai Guo ◽  
Megan S Lord ◽  
Zhongxiao Peng

Osteoarthritis is a degenerative joint disease that affects millions of people worldwide. The aims of this study were (1) to quantitatively characterise the boundary and surface features of wear particles present in the synovial fluid of patients, (2) to select key numerical parameters that describe distinctive particle features and enable osteoarthritis assessment and (3) to develop a model to assess osteoarthritis conditions using comprehensive wear debris information. Discriminant analysis was used to statistically group particles based on differences in their numerical parameters. The analysis methods agreed with the clinical osteoarthritis grades in 63%, 50% and 61% of particles for no osteoarthritis, mild osteoarthritis and severe osteoarthritis, respectively. This study has revealed particle features specific to different osteoarthritis grades and provided further understanding of the cartilage degradation process through wear particle analysis – the technique that has the potential to be developed as an objective and minimally invasive method for osteoarthritis diagnosis.


2014 ◽  
Vol 216 ◽  
pp. 226-230
Author(s):  
Ciprian Stamate ◽  
Corneliu Munteanu ◽  
Monica Cretan Stamate

Joint prosthesis involves the combination in the form of friction couplings of the different materials such as two metals, metal-polymer and polymer-ceramic. This paper aims to analyze the wear particles produced from the friction between two biomaterials: ultra hight molecular weight polyethylene( uhmwpe ) and magnesium aluminosilicate ceramic. To obtain the wear particles using a tribometer cetr umt-2 type that can reproduce the wear phenomena of different biomaterials in different humidity conditions and at various speeds of movement. The tests were performed in dry and lubricated friction conditions using saline solution, the best imitating biological conditions. The movement is similar to the friction torques of the hip joint: a semicircular motion of the polymer piece on the circular surface of the ceramic piece. Movement speed chosen is 0.25 m/s. Wear particles obtained were isolated from biomaterial surfaces and studied using scanning electron microscope. The images obtained are analyzed, particle's dimensions are extracted and then imported into autocad can provide information about the shape, size and surface of the particles. In light of these facts, we can say the inflammatory risk of biomaterial particles. In conclusion, the biomaterial particles are very small and the inflammatory rick is reducing to minimum in lubricated conditions.


2020 ◽  
Vol 102-B (11) ◽  
pp. 1527-1534
Author(s):  
Kumi Orita ◽  
Yukihide Minoda ◽  
Ryo Sugama ◽  
Yoichi Ohta ◽  
Hideki Ueyama ◽  
...  

Aims Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 107 counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 107 counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534.


2021 ◽  
pp. 303-322
Author(s):  
Anadi Sinha

The purpose of Plant Predictive Maintenance (PDM) programme is to improve Reliability of machineries through early detection and diagnosis of equipment problems, and degradation prior to equipment failure. Ferrography (Wear Particle Analysis) is one of the PDM techniques which allows detection, identification and evaluation of the degradation at the very incipient stage so that degradation is timely attended and mitigatory actions initiated. Ferrography is a Wear Particle Analysis technique based upon systematic collection and analysis of sample of lubricating oil from rotating and reciprocating machines. Ferrography analysis is conducted in 2 phases: Stage I – Quantitative, and Stage II – Qualitative. After Stage II analysis, recommendation is issued based on wear rating (Normal, Marginal, or Critical) so that operator can take timely action. Presently, 21 Nuclear Power Plants are operational in India and Forced Shutdown is a very costly affair. Lube oil of around 60 equipment from Indian Nuclear Power Plants is examined quarterly for Ferrography analysis, and failure of several equipment is avoided due to timely action. This paper will elaborate on the basic principles of Ferrography, and how systematic implementation of Ferrography has helped in avoiding forced failure of equipment, and hence prevent Forced Shutdown.


Wear ◽  
2015 ◽  
Vol 334-335 ◽  
pp. 1-12 ◽  
Author(s):  
Andreas Rosenkranz ◽  
Tobias Heib ◽  
Carsten Gachot ◽  
Frank Mücklich

Author(s):  
G. W. Stachowiak

Since the early 1970s wear particles have been used as indicators of the health status of industrial machinery. Their quantity, size and morphology was utilized in machine condition monitoring to diagnose and predict the likelihood or the cause of machine failure. In particular, the wear particle morphology was found useful as it contains the vast wealth of information about the wear processes involved in particle formation, and the wear severity. However, the application of wear particle morphology analysis in machine condition monitoring has limitations. This is due to the fact that the process largely depends on the experience of the technicians conducting the analysis. Research efforts are therefore directed towards making the whole wear particle analysis process experts-free, i.e. automated. To achieve that a detailed database of wear particle morphologies, generated under different operating conditions and with different materials for sliding pairs, must be assembled. Next, the reliable and accurate methods allowing for the description of 3-D wear particle morphology must be found. Multiscale and nonstationary characteristics of wear particle surface topographies must be accounted for. Finally, a reliable wear particle classification system must be developed. This classification system must be reliable and robust hence the selection of appropriate classifiers becomes a critical issue. It is hoped that the system, once fully developed, would eliminate the need for experts in wear particle analysis and make the whole analysis process less time consuming, cheaper and more reliable. In this presentation it is shown how the problems leading towards the development of such system are gradually overcome. Also, the recent advances towards the development of expert-free wear particle morphology system for the application in machine condition monitoring are presented.


Sign in / Sign up

Export Citation Format

Share Document