steel surfaces
Recently Published Documents


TOTAL DOCUMENTS

1438
(FIVE YEARS 250)

H-INDEX

62
(FIVE YEARS 10)

2022 ◽  
Vol 7 ◽  
pp. 100194
Author(s):  
Ettore Maggiore ◽  
Inam Mirza ◽  
David Dellasega ◽  
Matteo Tommasini ◽  
Paolo M. Ossi

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Hugo Pérez ◽  
Gregorio Vargas ◽  
Rodolfo Silva

In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria. Within the macroorganisms that then damage the steel, mollusks and crustaceans are the most commonly observed. The aim of this review was to identify the mechanisms involved in biofouling on stainless steel and to evaluate the research done on preventing or mitigating this problem using nanotechnology in humid environments in three areas of human activity: food manufacturing, the implantation of medical devices, and infrastructure in marine settings. Of these protective processes that modify the steel surfaces, three approaches were examined: the use of inorganic nanoparticles; the use of polymeric coatings; and, finally, the generation of nanotextures.


2022 ◽  
Author(s):  
V.S. Konovalova

Abstract. The possibility of obtaining luminous phosphate coatings on steel by cold method has been studied. Modified cold phosphating solutions containing organic additives (glycerin, trilon B, OS-20 emulsifier) were selected as the basis to maintain the pH, stabilize the solution and improve the quality and structure of the deposited coatings. To obtain the glow effect, a green phosphor based on Zn2SiO4 containing manganese as a sensitizer was added to the phosphating solution. During deposition, phosphate coatings are obtained that glow with spots, but constant mixing of the solution during deposition contributes to the uniform distribution of phosphor in the phosphate film. Luminous phosphate coatings have good protective properties, they can be used as an independent protection of steel surfaces from corrosion.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032087
Author(s):  
V G Gusev ◽  
A V Sobolkov ◽  
A V Aborkin

Abstract In this work, experimental studies on the rebound of a steel ball from aluminum and steel surfaces have been carried out. Using the ideology of the method of discrete elements, a three-dimensional model of the process was built. By carrying out multivariate calculations with varying the restitution coefficient and subsequent comparison of experimental and calculated data on the ball rebound height, the actual restitution coefficient for contact pairs “steel - steel” and “steel - aluminum” was determined. The results of the work will be used in the development of a complex model of high-energy ball milling.


2021 ◽  
Author(s):  
Agata Stobnicka-Kupiec ◽  
Małgorzata Gołofit-Szymczak ◽  
Marcin Cyprowski ◽  
Rafał L. Górny

Abstract This study aimed to qualitatively and quantitatively assess the prevalence of the most common respiratory and gastrointestinal viruses in the air, surface swab, and influent/effluent samples collected in wastewater treatment plants (WWTPs). Application of qPCR/RT-qPCR assays combined with PMA dye pretreatment allowed detecting the potentially infectious and disintegrated viral particles in collected samples. In the air at workplaces in WWTPs, the most frequent isolation with the highest concentrations (reaching up to 103 gc/m3 of potentially infectious intact viral particles) were observed in case of adenoviruses (AdVs) and rotaviruses (RoVs), followed by noroviruses (NoVs). Viruses were significantly more often detected in the air samples collected with Coriolis®μ impinger, than with MAS-100NT impactor. The temperature negatively (Spearman correlation: –1 < R < 0; p < 0.05), while RH positively (0 < R < 1; p < 0.05) affected airborne concentrations of potentially infectious viral particles. In turn, the predominant viruses on studied surfaces were RoVs and NoV GII with concentrations of potentially infectious virions up to 104 gc/100 cm2. In the cases of SARS-CoV-2 and presumptive SARS-CoV-2 or other coronaviruses, their concentrations reached up to 103 gc/100 cm2. The contamination level of steel surfaces in WWTPs was similar to this on plastic ones. This study revealed that the qualitative and quantitative characteristics of respiratory and gastrointestinal viruses at workplaces in WWTPs is important for proper exposure assessment and needs to be included in risk management in occupational environment with high abundance of microbial pollutants derived from wastewater.


Sign in / Sign up

Export Citation Format

Share Document