Dynamic Response Analysis of Reinforced Concrete Suspension Bridge under Seismic Action

2013 ◽  
Vol 405-408 ◽  
pp. 2020-2024
Author(s):  
Li Ming Wu

Taking the typical reinforced concrete stiffening truss suspension bridge as example, finite element analysis model under seismic action is established. Dynamic response analysis is done on this suspension bridge using finite element software ANSYS and contrast is done between this analysis result and structural response under gravity load effect. Contrast result shows that structural response under seismic action is obviously higher than that under gravity load effect in which internal force response is greater than displacement. The function of dynamic load should be taken into account in the design of bridge structure in order to provide reference for the structural design of long-span flexible bridge.

2011 ◽  
Vol 255-260 ◽  
pp. 304-308
Author(s):  
Yong Gang Ding ◽  
Jian Qiang Wang ◽  
Yu Cheng ◽  
Ling Fan

In consideration of the deficient study on dynamic response of reinforced concrete silos, especially group silos at home and abroad, taking the silos of one grain storage for instance, the dynamic response analysis of a single column-supported silo and that of group silos are carried out and contrasted through finite element method. Then the analysis results are contrasted with corresponding standards as well as academic studies.


1994 ◽  
Vol 10 (2) ◽  
pp. 333-356 ◽  
Author(s):  
Kazuhiko Kawashima ◽  
Kinji Hasegawa

This paper presents the new seismic design specifications for highway bridges issued by the Ministry of Construction in February 1990. Revisions of the previous specifications were based on the damage characteristics of highway bridges that were developed after the recent earthquakes. The primary revised items include the seismic lateral force, evaluation of inertia force for design of substructures considering structural response, checking the bearing capacity of reinforced concrete piers for lateral load, and dynamic response analysis. Emphasis is placed on the background of the revisions introduced in the new seismic design specifications.


2018 ◽  
Vol 764 ◽  
pp. 391-398
Author(s):  
Xing Han ◽  
Lian Jin Li

Due to the influence of rolling force fluctuations, tube size changes and material uniformity and other factors, vibration and other phenomenon inevitably occur in the rolling process of tandem rolling mill. This vibration has a great impact on the dynamic stability of the mill and rolling reduction, and will significantly reduce the dimensional accuracy and surface quality of seamless steel pipe. In this paper, the non-linear finite element software ABAQUS is used to simulate the rolling process of seamless steel pipe. First, rolling force of the first frame with the maximum rolling force of PQF rolling mill is calculated. The reliability of rolling force calculated by the finite element method is verified by the test experiment. The dynamic response analysis of the roll is carried out to obtain the dynamic response curve of the roll in the rolling state and to provide technical support for the rolling schedule with the calculated rolling force being the load.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950035
Author(s):  
Tuanjie Li ◽  
Hangjia Dong ◽  
Xi Zhao ◽  
Yaqiong Tang

Dynamic response analysis plays an important role for the structural design. For engineering structures, there exist model inaccuracies and structural parameters uncertainties. Consequently, it is necessary to express these uncertain parameters as interval variables and introduce the interval finite element method (IFEM), in which the elements in stiffness matrix, mass matrix and damping matrix are all the function of interval parameters. The dependence of interval parameters leads to overestimation of dynamic response analysis. In order to reduce the overestimation of IFEM, the element-based subinterval perturbation for static analysis is applied to dynamic response analysis. According to the interval range, the interval parameters are divided into different subintervals. With permutation and combination of each subinterval, the upper and lower bounds of displacement response are obtained. Because of the large number of degrees of freedom and uncertain parameters, the Laplace transform is used to evaluate the dynamic response for avoiding to frequently solve the interval finite element linear equations. The numerical examples illustrate the validity and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document