Storage Technology Research on Three Dimensional Flight Track Based on KML and SQL Server

2013 ◽  
Vol 421 ◽  
pp. 717-720
Author(s):  
Jing Li ◽  
Yong Tang ◽  
Wei Cui

For the asymmetry of real time flight information among civil aviation departments and between civil aviation and popular users, the users satisfaction reduced. A research on storage of 3D flight track was proposed combining KML and SQL Server. Firstly, SQL server is applied for storage of existing real time flight data and authorized users information. Then, the KML file is written to present dynamic 3D track. Finally, a website was deployed for authorized user to download the flight data. The research was realized and indicated that it increases data sharing between civil aviation sections and users, and decreases the risk of data leakage.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehmet Kadri Akyüz

Purpose The purpose of this paper is to calculate the fuel consumption and emissions of carbon monoxide (CO), nitrogen oxide (NOx) and hydrocarbons (HC) in the taxi-out period of aircraft at the International Diyarbakir Airport in 2018 and 2019. Design/methodology/approach Calculations were performed by determining the engine operating times in the taxi-out period with the flight data obtained from the airport authority. In the analyses, aircraft series and aircraft engine types were determined, and the Engine Exhaust Emission Databank of the International Civil Aviation Authority (ICAO) were used for the calculation. Findings Total fuel consumption in the taxi-out period in 2018 and 2019 was calculated as 525.64 and 463.69 tons, respectively. In 2018, HC, CO and NOx emissions caused by fuel consumption were found to be 1,109, 10,668 and 2,339 kg, respectively. In 2019, the total HC, CO and NOx emissions released to the atmosphere during the taxi-out phase are 966, 9,391 and 2,126 kg, respectively. B737 Series aircraft have the largest share in total fuel consumption and pollutant emissions. Practical implications This study explains the importance of determining fuel consumption and pollutant emissions by considering engine operating times in the taxi-out period. The study provides aviation authorities with scientific methods to follow in calculating fuel consumption and emissions from aircraft operations. Originality/value The originality of this study is the calculation of fuel consumption and pollutant emissions by determining real-time engine running times in the taxi-out period. In addition, calculations were made with real engine operating times determined in the taxi-out period using real flight data.


2010 ◽  
Vol 151 (21) ◽  
pp. 854-863 ◽  
Author(s):  
Attila Nemes ◽  
Marcel L. Geleijnse ◽  
Osama I. I. Soliman ◽  
Wim B. Vletter ◽  
Jackie S. McGhie ◽  
...  

Jelenleg az echokardiográfia a legszéleskörűbben alkalmazott rutin noninvazív diagnosztikus eljárás, amelynek segítségével a mitralis billentyű morfológiája és funkciója jellemezhető. Ennek az összefoglaló jellegű közleménynek a célja az egyik legújabb echokardiográfiás fejlesztés, a transthoracalis real-time háromdimenziós echokardiográfia szerepének bemutatása a mitralis billentyű vizsgálatában.


Sign in / Sign up

Export Citation Format

Share Document