Determination of fuel consumption and pollutant emissions with the real-time engine running data of aircrafts in the taxi-out period

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehmet Kadri Akyüz

Purpose The purpose of this paper is to calculate the fuel consumption and emissions of carbon monoxide (CO), nitrogen oxide (NOx) and hydrocarbons (HC) in the taxi-out period of aircraft at the International Diyarbakir Airport in 2018 and 2019. Design/methodology/approach Calculations were performed by determining the engine operating times in the taxi-out period with the flight data obtained from the airport authority. In the analyses, aircraft series and aircraft engine types were determined, and the Engine Exhaust Emission Databank of the International Civil Aviation Authority (ICAO) were used for the calculation. Findings Total fuel consumption in the taxi-out period in 2018 and 2019 was calculated as 525.64 and 463.69 tons, respectively. In 2018, HC, CO and NOx emissions caused by fuel consumption were found to be 1,109, 10,668 and 2,339 kg, respectively. In 2019, the total HC, CO and NOx emissions released to the atmosphere during the taxi-out phase are 966, 9,391 and 2,126 kg, respectively. B737 Series aircraft have the largest share in total fuel consumption and pollutant emissions. Practical implications This study explains the importance of determining fuel consumption and pollutant emissions by considering engine operating times in the taxi-out period. The study provides aviation authorities with scientific methods to follow in calculating fuel consumption and emissions from aircraft operations. Originality/value The originality of this study is the calculation of fuel consumption and pollutant emissions by determining real-time engine running times in the taxi-out period. In addition, calculations were made with real engine operating times determined in the taxi-out period using real flight data.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilkay Orhan

Purpose The purpose of this study is to present the pollutant gas produced by hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) and the quantity of fuel burned from commercial aircraft at Ordu-Giresun International Airport, Turkey during the landing and take-off (LTO) cycles in 2017. Design/methodology/approach The flight data recorded by the General Directorate of State Airports Authority and the aircraft engine emission data from International Civil Aviation Organization (ICAO) Engine Exhaust Emission Databank were used for calculation. The aircraft and engine types used by the airlines for flight at Ordu-Giresun International Airport were determined. To evaluate the effect of taxi time on emission amounts, analysis and evaluations were made by taking different taxi times into consideration. Findings As a result of the emission analysis, the amount of fuel consumed by the aircraft were calculated as 6,551.52 t/y, and the emission amounts for CO, HC and NOx were estimated as 66.81, 4.20 and 79.97 t/y, respectively. Practical implications This study is aimed to reveal the effect and contribution of taxi time on the emitted emission at the airport during the LTO phase of the aircraft. Originality/value This study helps aviation authorities explain the importance of developing procedures that ensure the delivery of aircraft to flights in minimum time by raising awareness of the impact of taxi time on emitted emissions, and contributes to the determination of an aircraft emission inventory at Ordu-Giresun International Airport.


2018 ◽  
Vol 122 (1258) ◽  
pp. 1967-1984 ◽  
Author(s):  
M. E. J. Stettler ◽  
G. S. Koudis ◽  
S. J. Hu ◽  
A. Majumdar ◽  
W. Y. Ochieng

ABSTRACTOptimisation of aircraft ground operations to reduce airport emissions can reduce resultant local air quality impacts. Single engine taxiing (SET), where only half of the installed number of engines are used for the majority of the taxi duration, offers the opportunity to reduce fuel consumption, and emissions of NOX, CO and HC. Using 3510 flight data records, this paper develops a model for SET operations and presents a case study of London Heathrow, where we show that SET is regularly implemented during taxi-in. The model predicts fuel consumption and pollutant emissions with greater accuracy than previous studies that used simplistic assumptions. Without SET during taxi-in, fuel consumption and pollutant emissions would increase by up to 50%. Reducing the time before SET is initiated to the 25th percentile of recorded values would reduce fuel consumption and pollutant emissions by 7–14%, respectively, relative to current operations. Future research should investigate the practicalities of reducing the time before SET initialisation so that additional benefits of reduced fuel loadings, which would decrease fuel consumption across the whole flight, can be achieved.


2021 ◽  
pp. 1-25
Author(s):  
A. Filippone ◽  
B. Parkes ◽  
N. Bojdo ◽  
T. Kelly

ABSTRACT Real-time flight data from the Automatic Dependent Surveillance–Broadcast (ADS-B) has been integrated, through a data interface, with a flight performance computer program to predict aviation emissions at altitude. The ADS-B, along with data from Mode-S, are then used to ‘fly’ selected long-range aircraft models (Airbus A380-841, A330-343 and A350-900) and one turboprop (ATR72). Over 2,500 flight trajectories have been processed to demonstrate the integration between databases and software systems. Emissions are calculated for altitudes greater than 3,000 feet (609m) and exclude landing and take-off cycles. This proof of concept fills a gap in the aviation emissions inventories, since it uses real-time flights and produces estimates at a very granular level. It can be used to analyse emissions of gases such as carbon dioxide ( $\mathrm{CO}_2$ ), carbon monoxide (CO), nitrogen oxides ( $\mathrm{NO}_x$ ) and water vapour on a specific route (city pair), for a specific aircraft, for an entire fleet, or on a seasonal basis. It is shown how $\mathrm{NO}_x$ and water vapour emissions concentrate around tropospheric altitudes only for long-range flights, and that the cruise range is the biggest discriminator in the absolute value of these and other exhaust emissions.


Author(s):  
Ioannis Goulos ◽  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 448 ◽  
Author(s):  
Juan Francisco Coloma ◽  
Marta García ◽  
Yang Wang ◽  
Andrés Monzón

This research aims to find the most ecological itineraries for urban mobility in a small city (eco-routes), where distances are rather short, but car dependence is really high. A real life citywide survey was carried out in the city of Caceres (Spain) with almost 100,000 inhabitants. Research was done on alternating routes, traffic, times of day, and weather conditions. The output of the study was to assess fuel consumption, CO2, and regulated pollutant emissions for different type of vehicles, routes, and drivers. The results show that in the case studied, urban roads had fewer emissions (CO2 and pollutants) but there was an increase in the population affected by pollutants. On the contrary, bypasses reduced travel time and congestion but increased fuel consumption and emissions. Traffic conditions had a greater influence on fuel consumption in petrol vehicles than diesel ones. Therefore, there must be a balanced distribution of traffic in order to minimize congestion, and at the same time to reduce emissions and the number of people affected by harmful pollution levels. There should be a combination of regulatory measures in traffic policies in order to achieve that balance by controlling access to city centres, limiting parking spaces, pedestrianization, and lowering traffic speeds in sensitive areas.


2014 ◽  
Vol 694 ◽  
pp. 34-38 ◽  
Author(s):  
Qun Zhang ◽  
Hua Sheng Xu ◽  
Yue Wu ◽  
Shun Li Sun ◽  
Dong Bo Yan ◽  
...  

A calculation method on pollutant emission inventory is established based on the standard LTO cycle of the International Civil Aviation Organization (ICAO) by analyzing the factors influencing aircraft engine emissions at civil aviation airports. For a certain airport in China, the emissions of HC, CO, NOx and SO2per hour for a whole day from the aircraft engines are calculated, and the variations of various pollutant emissions with time are analyzed based on the air traffic data, the civil aviation fleet composition, the flight detailed take-off and landing information at the airport, and ICAO engine emission data bank. It’s found that the variations of the pollutant emissions with time are different, in which, the emissions of HC and CO are significantly influenced by the frequency of flight arrival at airport, however, the emission of NOx is influenced by the frequency of flight departure from airport greatly, and the emission of SO2is influenced by the total frequency of flight arrival at and departure from airport comprehensively. For solving the problem of local high-emission time, some solutions are suggested, such as equipping aircrafts with low-emission engines or optimizing the flight schedule.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5346
Author(s):  
John Jairo Ceballos ◽  
Andrés Melgar ◽  
Francisco V. Tinaut

The present study shows the effects of environmental conditions (atmospheric temperature, pressure and relative humidity) due to altitude changes on performance, fuel consumption and emissions in a naturally aspirated diesel engine. Due to changes in altitude, the atmospheric conditions are altered, mainly the air density, associated to hydrostatic pressure, temperature profile and humidity and relative nitrogen/oxygen ratio, thus modifying the engine intake conditions. The study considers changes in altitude from sea level to 2500 m above sea level, which are representative of the orographic conditions in Ecuador. As a main part of this research, a parametric study of variation of atmospheric temperature, pressure and relative humidity is carried out in AVL BOOST™, showing the effects on mean effective pressure, fuel consumption and specific pollutant emissions (CO2, NOx, CO and soot). The study considers effects at regional level (change from an altitude to another) and local level (changes in the atmospheric conditions due to local anticyclone or storm, temperature and humidity). The quantitative effects are expressed in the form of sensitivity coefficients, e.g., relative change in an engine output variable due to the change in atmospheric pressure, temperature or humidity. In addition, several global correlations have been obtained to provide analytical expressions to summarize all results obtained, showing the separate effect of pressure and temperature on each engine performance variable.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1649 ◽  
Author(s):  
Nan Li ◽  
Yu Sun ◽  
Jian Yu ◽  
Jian-Cheng Li ◽  
Hong-fei Zhang ◽  
...  

Aircraft emissions are the main cause of airport air pollution. One of the keys to achieving airport energy conservation and emission reduction is to optimize aircraft taxiing paths. The traditional optimization method based on the shortest taxi time is to model the aircraft under the assumption of uniform speed taxiing. Although it is easy to solve, it does not take into account the change of the velocity profile when the aircraft turns. In view of this, this paper comprehensively considered the aircraft’s taxiing distance, the number of large steering times and collision avoidance in the taxi, and established a path optimization model for aircraft taxiing at airport surface with the shortest total taxi time as the target. The genetic algorithm was used to solve the model. The experimental results show that the total fuel consumption and emissions of the aircraft are reduced by 35% and 46%, respectively, before optimization, and the taxi time is greatly reduced, which effectively avoids the taxiing conflict and reduces the pollutant emissions during the taxiing phase. Compared with traditional optimization methods that do not consider turning factors, energy saving and emission reduction effects are more significant. The proposed method is faster than other complex algorithms considering multiple factors, and has higher practical application value. It is expected to be applied in the more accurate airport surface real-time running trajectory optimization in the future. Future research will increase the actual interference factors of the airport, comprehensively analyze the actual situation of the airport’s inbound and outbound flights, dynamically adjust the taxiing path of the aircraft and maintain the real-time performance of the system, and further optimize the algorithm to improve the performance of the algorithm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yong Li ◽  
Feifei Han ◽  
Xinzhe Zhang ◽  
Kai Peng ◽  
Li Dang

Purpose In this paper, with the goal of reducing the fuel consumption of UAV, the engine performance optimization is studied and on the basis of aircraft/engine integrated control, the minimum fuel consumption optimization method of engine given thrust is proposed. In the case of keeping the given thrust of the engine unchanged, the main fuel flow of the engine without being connected to the afterburner is optimally controlled so as to minimize the fuel consumption. Design/methodology/approach In this study, the reference model real-time optimization control method is adopted. The engine reference model uses a nonlinear real-time mathematical model of a certain engine component method. The quasi-Newton method is adopted in the optimization algorithm. According to the optimization variable nozzle area, the turbine drop-pressure ratio corresponding to the optimized nozzle area is calculated, which is superimposed with the difference of the drop-pressure ratio of the conventional control plan and output to the conventional nozzle controller of the engine. The nozzle area is controlled by the conventional nozzle controller. Findings The engine real-time minimum fuel consumption optimization control method studied in this study can significantly reduce the engine fuel consumption rate under a given thrust. At the work point, this is a low-altitude large Mach work point, which is relatively close to the edge of the flight envelope. Before turning on the optimization controller, the fuel consumption is 0.8124 kg/s. After turning on the optimization controller, you can see that the fuel supply has decreased by about 4%. At this time, the speed of the high-pressure rotor is about 94% and the temperature after the turbine can remain stable all the time. Practical implications The optimal control method of minimum fuel consumption for the given thrust of UAV is proposed in this paper and the optimal control is carried out for the nozzle area of the engine. At the same time, a method is proposed to indirectly control the nozzle area by changing the turbine pressure ratio. The relevant UAV and its power plant designers and developers may consider the results of this study to reach a feasible solution to reduce the fuel consumption of UAV. Originality/value Fuel consumption optimization can save fuel consumption during aircraft cruising, increase the economy of commercial aircraft and improve the combat radius of military aircraft. With the increasingly wide application of UAVs in military and civilian fields, the demand for energy-saving and emission reduction will promote the UAV industry to improve the awareness of environmental protection and reduce the cost of UAV use and operation.


Sign in / Sign up

Export Citation Format

Share Document