exhaust emission
Recently Published Documents


TOTAL DOCUMENTS

1178
(FIVE YEARS 280)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hyeryeong Jeong

Abstract Background Particles from non-exhaust emissions derived from traffic activities are a dominant cause of toxic metal pollution in urban environments. Recently, studies applying multiple isotope values using the Iso-source and positive matrix factorization (PMF) models have begun to be used as useful tools to evaluate the contribution of each pollution source in urban environments. However, data on the metal concentrations and isotopic compositions of each potential source are lacking. Therefore, this study presents data on toxic metals and Cu, Zn, and Pb isotopic compositions in tires, which are one of the important non-exhaust emission sources. Findings Among the toxic metals, Zn had the highest concentration in all tire samples, and the mean concentrations were in the order of Zn > Cu > Pb > Sn > Sb > Ni > Cr > As > Cd. Ni, Zn, Sn, and Sb had higher concentrations in domestic tires (South Korea), and the Cu, Cd, and Pb concentrations were relatively higher in imported tires. The mean values of δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb ranged from − 1.04 to − 0.22‰, − 0.09 to − 0.03‰, and 1.1242 to 1.1747, respectively. The concentrations and isotopic compositions of Cu and Pb in the tires showed large differences depending on the product and manufacturer. However, the differences in Zn concentration and δ66ZnIRMM3702 values were very small compared with those of Cu and Pb. The relationships of the Zn concentration and isotopic composition showed that domestic tires are clearly distinguishable from imported tires. Bi-plots of Cu, Zn, and Pb isotopic compositions indicated that tires can be clearly discriminated from natural-origin and other non-exhaust traffic emission sources. Conclusions The multi-isotope signatures of Cu, Zn, and Pb exhibited different isotopic values for other non-exhaust traffic emission sources than for tires, and application of the multi-isotope technique may be a powerful method for distinguishing and managing non-exhaust sources of metal contamination in urban environments.


2021 ◽  
Vol 60 (4) ◽  
pp. 259-273
Author(s):  
Mariusz Wasiak ◽  
Piotr Zdanowicz ◽  
Marcin Nivette

The progressive degradation of the environment makes implementing pro-ecological solutions in various areas of our lives more meaningful. These measures also apply to transport, responsible for around 30% of total carbon dioxide emissions in the EU. Implementing ecological solutions in road transport encounters various barriers resulting mainly from the specificity of transport tasks. One of the most promising solutions in the high-tonnage road transport sector seems to be LNG-fueled engines, which allow for similar operating conditions to traditional combustion vehicles. The article aims to identify the environmental benefits of the use of high-tonnage LNG-fueled vehicles in freight transport and to conduct a comprehensive assessment of the economic efficiency of this solution. The article assesses the effectiveness of using an LNG-fueled vehicle and a diesel-fueled vehicle that meets the highest exhaust emission standard in high-tonnage transport, both in terms of economy and an impact of these solutions on the environment. The research was carried out on a given route, taking into account variants of vehicle manning and simulations of transport cycle time. In conclusion, a discussion of the obtained results was carried out, emphasizing the factors determining the profitability of using high-tonnage vehicles with LNG drive or its lack. Regardless of the indicated lack of clarity in the economic assessment of the effectiveness of LNG drives in high-tonnage vehicles, the identified environmental benefits from implementing these solutions seem to be quite unequivocal. Thus, it should be expected that in the event of loss of economic competitiveness of these solutions, appropriate fiscal instruments should be used - especially since LNG drives in the policies of individual countries are considered pro-ecological solutions.


Author(s):  
S. Padmanabhan ◽  
C. Joel ◽  
Linda Joel ◽  
Obulareddy Yuvatejeswar Reddy ◽  
K.G.D. Sri Harsha ◽  
...  

Considering the amount of waste plastics has risen significantly, energy may be extracted from it. Not only is it possible to dispose of waste plastics by converting them to fuel, but it is also possible to extract energy from them. Our research is motivated by the prospect of using waste plastics as a source of energy through waste plastic pyrolysis oil (WPPO). The innovation of this research is that it will assess the efficiency of plastic pyrolysis oil derived from Low-Density Polyethylene (LDPE) on a Thermal Barrier Coated (TBC) piston engine. The incremental ratio of WPPO to pure diesel with the addition of diethyl ether (DEE) was determined and its output and exhaust emission standards were evaluated using a direct injection single cylinder low heat rejection diesel engine. The results for the WPPO blends were promising as with TBCW20DEE10 demonstrating a 5 to 15% increase in carbon monoxide under different load conditions. TBCW20DEE10 confirmed a greater reduction of hydrocarbons varying from 5 to 12 %. At half load condition, TBCW20DEE10 emits approximately 3.5 % less unit of smoke.


Author(s):  
Abdul Rahman ◽  
Asnawi Asnawi ◽  
Reza Putra ◽  
Hagi Radian ◽  
Tri Waluyo

Bioethanol characteristics can be used as an alternative fuel to spark-ignition (SI) engines to reduce emissions. This experiment evaluates the production of emissions for SI engines using hydrogen enrichment in the gasoline-bioethanol fuel blends. The fraction of bioethanol fuel blend was added to the gasoline fuel of 10% by volume and hydrogen fuel produced by the electrolysis process with a dry cell electrolyzer. The NaOH was used as an electrolyte which is dissolved in water of 5% by a mass fraction. The test is conducted using a single-cylinder 155cc gasoline engine with sensors and an interface connected to a computer to control loading and record all sensor variables in real-time. Hydrogen produced from the electrolysis reactor is injected through the intake manifold using two injectors, hydrogen injected simultaneously at a specific time with a gasoline-bioethanol fuel. The test was conducted with variations of engine speeds. The emission product of ethanol--H2 (BE10+H2) was an excellent candidate as a new alternative of fuel solution in the future. The engasolinerichment of hydrogen increased the flame speed and generated a stable combustion reaction. The hydrogen enrichment produced CO2 emission due to the unavailability of carbon content in hydrogen fuel. As a result, the C/H ratio is lower than for mixed fuels.


2021 ◽  
Author(s):  
Xinfeng Zhang ◽  
Cheng Tian ◽  
Zhihui Niu ◽  
Xudong Li

Now there are more and more new energy vehicles on the road, compare to the traditional vehicles that use the oil to offer the power, the new energy vehicles use electric or hydrogen to offer the power, which have no exhaust pollution emission, but also have non-exhaust emission. Brake and tyre system are the special components of vehicles due to the frequent replacement, they are the main source of the non-exhaust emission. Brake system is one of the most important safety systems of vehicles. The system can reduce the speed of the vehicle and keep the vehicle stable when going downhill. Friction between brake disc and pads or shoes during driving creates small particles that are released into the atmosphere, soil and rivers. The particles have different dimensions, some element or matter inside maybe harmful to human and environment. So it is very important to know more about the non-exhaust brake emission. Here, we focus on the specification of GRPE-81-12 “Non-Exhaust Brake Emissions – Laboratory testing – Part 1: Inertia Dynamometer Protocol to Measure and Characterise Brake Emissions Using the WLTP-Brake Cycle” and do the detailed interpretation.


Author(s):  
Thokchom Subhaschandra Singh ◽  
Upendra Rajak ◽  
Tikendra Nath Verma ◽  
Prerana Nashine ◽  
Hassan Mehboob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document