Calculation of Earth Pressure on Straight Ditch Buried Rigid Pipe

2013 ◽  
Vol 438-439 ◽  
pp. 824-828
Author(s):  
Qing Liu ◽  
Wei Ding ◽  
Jian Bo Cui ◽  
Yan Xiao ◽  
Xue Qiang Zhao

Based on the unified twin shear strength theory, a new earth pressure formula is deduced for the straight groove buried rigid pipes, with a straight slip plane soil pressure calculation model established. Compared with traditional earth pressure calculation method, the new formula which considers influence of intermediate principal stress on the pipeline earth pressure can obtain the result which is much closer to the actual pipeline stress situation. The results determined from the proposed formula with an engineering example show the influence law of slot width and the thickness of the overburden on tube top soil pressure. The conclusions have some guidance significance for optimization design of pipeline engineering.

2011 ◽  
Vol 368-373 ◽  
pp. 2755-2759
Author(s):  
Tai Hua Yang ◽  
Huai Jian He ◽  
Xiang Chao Gong

According to Moore-Coulomb strength theory, combined with the shear strength reduction method, assumed that the exerted value of the soil’s internal friction Angle and displacement were in nonlinear, and the exerted value of the soil’s cohesion and displacement were in linear, and then put forward a unified, continuous with displacement earth pressure calculation model, and this model could be used to calculate the active and passive earth pressure for cohesive soils and cohesionless soils in any nonlimited state and any movement mode. Through the analysis of the calculation model showed that: (1) The above assumptions were all reasonable from the two perspectives of the theoretical and the measuring; (2) The variation process of earth pressure acted on the retaining wall with displacement, could regard as the process of the soil’s shear strength parameters exerting gradually; (3) Given the physical meanings to the calculated parameters; (4) Analyzed the characteristics of the calculation model, and pointed out that there were calculation errors when the displacement of retaining wall was in (0, x0H) for the Rankine earth pressure theory.


2012 ◽  
Vol 594-597 ◽  
pp. 430-433 ◽  
Author(s):  
Chang Guang Zhang ◽  
Dong Hui Zhu ◽  
Zhi Gao ◽  
Guang Wei Xue ◽  
Zheng Li

With two different distributions of matric suction, the unified solution of passive earth pressure for unsaturated soils is obtained, which is based on the unified shear strength for unsaturated soils in terms of two independent state stress variables and could avoid some shortages of Rankine's passive earth pressure. The influence of intermediate principal stress and matric suction on passive earth pressure is discussed. The results show that the passive earth pressure increases significantly with the unified strength theory parameter or matric suction increasing, and does not change more rapidly when matric suction decreases linearly with depths than that is constant.


2012 ◽  
Vol 204-208 ◽  
pp. 718-721 ◽  
Author(s):  
Peng Li ◽  
Xiao Song

The traditional formula using for the calculation of Expressway on high embankment of the retaining wall and the earth pressure can not be very good practical. In order to accurately determine the soil pressure calculation of the complex retaining wall in construction stage for guaranteeing the engineering safety, the experiment study on soil pressure is done, and the study on soil pressure monitoring data is also done. Then the valuable conclusions are obtained to facilitate better practical guidance for construction.


2012 ◽  
Vol 170-173 ◽  
pp. 755-761 ◽  
Author(s):  
Wen Biao Liang ◽  
Jun Hai Zhao ◽  
Yan Li ◽  
Chang Guang Zhang ◽  
Su Wang

Based on the unified solution of shear strength in terms of double stress state variables for unsaturated soils, whilst considering the effect of the intermediate principal stress rationally, the unified solution of Coulomb’s active earth pressure for unsaturated soils without cracks is developed. Comparability of the solution is analyzed and influencing characteristic of each factor is obtained. The research result indicates that: the intermediate principal stress and matric suction have obvious impacts on Coulomb’s active earth pressure for unsaturated soils; Coulomb’s active earth pressure has been decreasing until zero with the increase of unified strength theory parameter and matric suction; Coulomb’s active earth pressure increases with the increase of grading angle of retaining wall and slop angle of backfill, but decreases with the increase of matric suction, effective internal friction angle and matric suction angle, while external friction angle has no obvious influence. The proposed unified solution of Coulomb’s active earth pressure enjoys a wider application, and unified solution of Rankine’s active earth pressure is just the special case. The results are of great significance to soil pressure determination such as slope and foundation pit, and to retaining structures design.


2013 ◽  
Vol 353-356 ◽  
pp. 392-397 ◽  
Author(s):  
Jin Song Gui ◽  
Bo Zhang ◽  
Zhi Qi Gao ◽  
Yu Fu

The filling earth pressure calculation inside the Sunken Large Diameter Cylindrical Structure is very complex. This paper used large-scale finite element software ABAQUS to establish numerical model, and validated it by the experimental data, then analyze the main cause of earth pressure change inside the cylinder.


2021 ◽  
Author(s):  
Song Zheng

In order to explore the distribution of soil pressure on the side of the pile and the bending moment of the pile body during the excavation and pile loading stages of the H-shaped prestressed concrete piles, three groups of indoor scaled model tests with prestressed rectangular piles and with or without prestressed H-shaped piles were carried out, and the test results shows that the lateral earth pressure on both sides of the sheet pile has the same trend as the static earth pressure calculation value when it is not excavated, but the measured earth pressure at different depths is always lower than the static earth pressure calculation value; in the excavation stage, the H-shaped prestressed pile lateral soil pressure on the side of the pile excavation is less than that of the rectangular sheet pile and the unprestressed H-typed pile.


2010 ◽  
Vol 168-170 ◽  
pp. 1370-1376
Author(s):  
We Long Yu ◽  
Jian Zhang ◽  
Xiu Hua Sun ◽  
Rui Lin Hu ◽  
Xin Wei

Estimating passive earth pressure accurately is very important when designing retaining wall. Based on the unified strength theory and plane strain assumption, an analytical solution has been developed to determine the passive lateral earth pressure distribution on a retaining structure when the backfill is cohesive and inclined considering the effect of the intermediate principal stress. The solution derived encompasses both Bell’s equation (for cohesive or cohesionless backfill with a horizontal ground surface) and Rankine’s solution (for cohesionless backfill with an inclined ground surface).


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


Sign in / Sign up

Export Citation Format

Share Document