Study on Soil Pressure of High Fill Retaining Wall in Construction Stage

2012 ◽  
Vol 204-208 ◽  
pp. 718-721 ◽  
Author(s):  
Peng Li ◽  
Xiao Song

The traditional formula using for the calculation of Expressway on high embankment of the retaining wall and the earth pressure can not be very good practical. In order to accurately determine the soil pressure calculation of the complex retaining wall in construction stage for guaranteeing the engineering safety, the experiment study on soil pressure is done, and the study on soil pressure monitoring data is also done. Then the valuable conclusions are obtained to facilitate better practical guidance for construction.

Gravity retaining wall are structures used to retain the soil by its weight .the stability of such type of walls depend on the magnitude and direction of the horizontal forces exerted by soil . it found that there is many factors affect the value and the acting point of acting. Based on this, a study was conducted to investigate the effect of water table, external vertical loads, sloping of the backfill and the type of the backfill soil. It show that, the value of the horizontal soil pressure increase from147KN/m' on dry soil to about 307 KN/m' as the soil become saturated.also,effect of external loads are studied , and show its increase the total horizontal forces of the soil pressure. Sloping the backfill soil behind the retaining wall also great effect on the earth pressure. The type of the backfill soil behind the retaining wall also investigated and found its effect of the earth forces.


2012 ◽  
Vol 268-270 ◽  
pp. 725-728
Author(s):  
Yi Huan Xie

The passive earth pressure on the both sides of a sheet pile retaining wall is owing to plasticity bounded, a fact that affects the horizontal loading capacity of the wall. In order to find out a method, that the loading capacity of the wall can be analytically calculated and the mentioned constrain could be token into account, the paper set up a DIMSP model, which consists of mechanics equilibrium principle including two inequalities for the plasticity condition of earth pressure. The deduced solution of the model is capable of calculating the bearing capacity, and possesses the advantages of no additional correction of the cut in depth of the wall. Further more the continuity of earth pressure distribution is ensured by this model, an adjustment of the earth pressure figure is also without difficulty possible. For engineering application some graphics are given, the cut in depth of the wall can be read from them conveniently.


2016 ◽  
Vol 53 (8) ◽  
pp. 1195-1212 ◽  
Author(s):  
Minsu Seo ◽  
Jong-Chul Im ◽  
Changyoung Kim ◽  
Jae-Won Yoo

A retaining wall using batter piles has been developed and studied to improve existing earth-retaining structures at Pusan National University. The earth-retaining method is a temporary excavation method using an integrated system of front supports and batter piles. The batter piles connected to the front supports significantly reduce the earth pressure acting on the front supports by distributing it to batter piles to increase structural stability. In this study, the existence of batter piles, the fixity of the tips of front supports or batter piles, the spacing between batter piles, and the verticality of front supports are varied across model tests. The lateral displacement of the earth-retaining wall decreased by approximately 40% and 15% for the existence and fixity of batter piles, respectively. The applicability of the earth-retaining method using batter piles has been verified with finite element analysis and field test execution in clay ground.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yong Liu ◽  
Hongzhe Liu ◽  
Zhanyong Yao ◽  
Mingxia Shao ◽  
Yulong Zhao

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhihui Wang ◽  
Aixiang Wu ◽  
Yiming Wang

A method was proposed to calculate the earth pressure from a cohesionless backfill with a high aspect ratio (ratio of height to width of retaining wall). An exponential equation of slip surface was proposed first. The proposed nonlinear slip surface equation can be obtained once the width and height of the backfill as well as the internal friction angle of the backfill were given. The failure surface from the proposed formula agreed well with the experimental slip surface. Then, the earth pressure was calculated using a simplified equilibrium equation based on the proposed slip surface. It is assumed that the minor principal stress of the backfill near the wall and at its corresponding slip surface where the depth is the same is the same. Thus, based on the vertical force balance of the horizontal backfill strip, assuming the wall-soil interface and the slip surface is in the limit equilibrium state, defined by the Mohr–Coulomb criterion, the differential equilibrium equation was obtained and numerically solved. The calculated results agreed well with the test data from the published literature.


2012 ◽  
Vol 594-597 ◽  
pp. 266-269
Author(s):  
Fu Lin Li ◽  
Fang Le Peng

On the basis of the Dynamic Relaxation method, a nonlinear finite element method (FEM) analysis procedure was developed for the geosynthetic-reinforced soil retaining wall. The FEM procedure technique incorporated the unified three-component elasto-viscoplastic constitutive model which can consider the rate-dependent behavior of both the backfill soil and the geosynthitic reinforcement. A simulation was performed on a physical model test on geosynthetic-reinforced soil retaining wall to validate the presented FEM. Extensive finite-element analyses were carried out to investigate the earth pressure distributions from the back of retaining wall under variable rate loading. It is shown that this FEM can well simulate the rate-dependent behavior and the earth pressure of geosynthetic-reinforced soil retaining wall.


2013 ◽  
Vol 790 ◽  
pp. 410-413
Author(s):  
Jian Ming Zhu ◽  
Qi Zhao

The earth pressure behind inclined wall considering the soil arching effects which was decided by two factors, the coefficient and average vertical stress, was necessary to research. Based on the analysis of stress state behind the retaining wall, the unified solution of active pressure and passive pressure was derived and was used to calculate both the magnitude and point of application. According to examples, as the angle of inclined retaining wall increasing which was signifying by , the arching effects would be also increasing which the soil was in the passive limit and be falling which the soil was in the active limit.


2011 ◽  
Vol 368-373 ◽  
pp. 2755-2759
Author(s):  
Tai Hua Yang ◽  
Huai Jian He ◽  
Xiang Chao Gong

According to Moore-Coulomb strength theory, combined with the shear strength reduction method, assumed that the exerted value of the soil’s internal friction Angle and displacement were in nonlinear, and the exerted value of the soil’s cohesion and displacement were in linear, and then put forward a unified, continuous with displacement earth pressure calculation model, and this model could be used to calculate the active and passive earth pressure for cohesive soils and cohesionless soils in any nonlimited state and any movement mode. Through the analysis of the calculation model showed that: (1) The above assumptions were all reasonable from the two perspectives of the theoretical and the measuring; (2) The variation process of earth pressure acted on the retaining wall with displacement, could regard as the process of the soil’s shear strength parameters exerting gradually; (3) Given the physical meanings to the calculated parameters; (4) Analyzed the characteristics of the calculation model, and pointed out that there were calculation errors when the displacement of retaining wall was in (0, x0H) for the Rankine earth pressure theory.


Sign in / Sign up

Export Citation Format

Share Document