Study on the Control Strategy of the Third Frequency Adjustment with the Participation of the Nuclear Power

2013 ◽  
Vol 448-453 ◽  
pp. 2556-2563
Author(s):  
Ye Kui Chang ◽  
Rao Liu ◽  
Chong Wang ◽  
Xin Zhang ◽  
Wei Dong Li

The third frequency adjustment is the key link of the grid frequency regulation. The admission of high capacity and rejection of small capacity policy on thermal power cause the lack of capacity of the third frequency adjustment. Wind power brings about a certain impact to the frequency stability of the power system, particularly, increasing the difficulty of the third frequency adjustment. The introduction of nuclear power into the third frequency adjustment has been proposed after analyzing the characteristics of the energy generation of different forms. This paper formulate the control strategy with the core of wind power decomposition, generator units grouping in the third frequency adjustment, after elaborating the technical feasibility and economic feasibility, and, come to a conclusion that the participation of the nuclear in the third frequency adjustment would guarantee the stability of the frequency of the power system with this control strategy in the case of the introduction of wind power to the system, by simulation analysis.

2019 ◽  
Vol 118 ◽  
pp. 02042
Author(s):  
Siqing Sheng ◽  
Pengwang Li ◽  
Hao Wu ◽  
Liwei Zhang ◽  
Maosen Fan

With the increasing installed capacity of the wind power, the power system has an obviously low inertia characteristic. It is of great significance to actively promote the virtual inertia frequency regulation technology of wind turbines (WTS) for improving the system frequency quality. The frequency regulation capability and frequency regulation effects of wind & thermal power units were analysed, and a variable inertia coordination frequency regulation strategy for different wind power penetration conditions was proposed in this paper. At the wind farm level, the dynamic frequency regulation participation coefficient of wind farms was fuzzily determined according to the operation conditions of WTS and the wind power penetration ratio. At the wind turbine level, the calculation method of the equivalent inertia constant of WTS was given based on the effective rotational kinetic energy. And the allowable range of frequency regulation parameters of WTS was determined by considering the incremental model of the system. Results indicated that the proposed coordinated frequency regulation strategy not only provided a reliable inertia support, but also maintained the stability of WTS. The frequency response performance of the high-penetration wind power system was improved.


2021 ◽  
Vol 1748 ◽  
pp. 052017
Author(s):  
Lei Yang ◽  
Wei Huang ◽  
Chen Wu ◽  
Shengnan Li ◽  
Yixuan Chen ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Fei Tang ◽  
Xiaoqing Wei ◽  
Yuhan Guo ◽  
Junfeng Qi ◽  
Jiarui Xie ◽  
...  

The sooner the system instability is predicted and the unstable branches are screened, the timelier emergency control can be implemented for a wind power system. In this paper, aiming at the problem that the existing unstable branch screening methods are lack prejudgment, an unstable branch screening method for power system with high-proportion wind power is proposed. Firstly, the equivalent external characteristics model of the wind farm was deduced. And based on this, the out-of-step oscillation characteristics of the power system with high proportion wind power was analyzed. Secondly, based on the oscillation characteristics, line weak-connection index (LWcI) was proposed to quantify the stability margin of a branch. Then an instability prediction method and an unstable branch screening method were proposed based on LWcI and voltage phase angle difference. Finally, the rapidity and effectiveness of the proposed method are verified through the simulation analysis of IEEE-118 system.


Sign in / Sign up

Export Citation Format

Share Document