Hybridizing Adaptive Biogeography-Based Optimization with Differential Evolution for Global Numerical Optimization

2013 ◽  
Vol 457-458 ◽  
pp. 1283-1287 ◽  
Author(s):  
Si Ling Feng ◽  
Qing Xin Zhu ◽  
Sheng Zhong ◽  
Xiu Jun Gong

Biogeography-based optimization (BBO) is a new biogeography inspired algorithm. It mainly uses the biogeography-based migration operator to share the information among solution. Differential evolution (DE) is a fast and robust evolutionary algorithm for global optimization. In this paper, we applied a hybridization of adaptive BBO with DE approach, namely ABBO/DE/GEN, for the global numerical optimization problems. ABBO/DE/GEN adaptively changes migration probability and mutation probability based on the relation between the cost of fitness function and average cost every generation, and the mutation operators of BBO were modified based on DE algorithm and the migration operators of BBO were modified based on number of iteration to improve performance. And hence it can generate the promising candidate solutions. To verify the performance of our proposed ABBO/DE/GEN, 9 benchmark functions with a wide range of dimensions and diverse complexities are employed. Experimental results indicate that our approach is effective and efficient. Compared with BBO/DE/GEN approaches, ABBO/DE/GEN performs better, or at least comparably, in terms of the quality of the final solutions and the convergence rate.

2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


Author(s):  
WENYIN GONG ◽  
ZHIHUA CAI ◽  
LIYUAN JIA ◽  
HUI LI

Differential evolution (DE) is a simple yet powerful evolutionary algorithm for global numerical optimization over continuous domain, which has been widely used in many areas. Although DE is good at exploring the search space, it is slow at the exploitation of the solutions. To alleviate this drawback, in this paper, we propose a generalized hybrid generation scheme, which attempts to enhance the exploitation and accelerate the convergence velocity of the original DE algorithm. In the hybrid generation scheme the operator with powerful exploitation is hybridized with the original DE operator. In addition, a self-adaptive exploitation factor is introduced to control the frequency of the exploitation operation. In order to evaluate the performance of our proposed generation scheme, two operators, the migration operator of biogeography-based optimization and the "DE/best/1" mutation operator, are employed as the exploitation operator. Moreover, 23 benchmark functions (including 10 test functions provided by CEC2005 special session) are chosen from the literature as the test suite. Experimental results confirm that the new hybrid generation scheme is able to enhance the exploitation of the original DE algorithm and speed up its convergence rate.


2011 ◽  
Vol 267 ◽  
pp. 632-634
Author(s):  
Jing Feng Yan ◽  
Chao Feng Guo

An Improved Differential evolution (IDE) is proposed in this paper. It has some new features: 1) using multi-parent search strategy and stochastic ranking strategy to maintain the diversity of the population; 2) a novel convex mutation to accelerate the convergence rate of the classical DE algorithm.; The algorithm of this paper is tested on 13 benchmark optimization problems with linear or/and nonlinear constraints and compared with other evolutionary algorithms. The experimental results demonstrate that the performance of IDE outperforms DE in terms of the quality of the final solution and the stability.


2014 ◽  
Vol 602-605 ◽  
pp. 3585-3588
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

To efficiently enhance the global search and local search of Differential Evolution algorithm ( DE), A modified differential evolution algorithm (MDE) is proposed in this paper. The MDE and the DE are different in two aspects. The first is the MDE Algorithm use a strategy of Pitch adjustment instead of original mutation operation, this can enhance the convergence of the MDE, the second is integrate the opposed-learning operation in the crossover operation to prevent DE from being trapped into local optimum. Four test functions are adopted to make comparison with original DE, the MDE has demonstrated stronger velocity of convergence and precision of optimization than differential DE algorithm and PSO.


2014 ◽  
Vol 989-994 ◽  
pp. 2536-2539
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a modified differential evolution algorithm (MDE) developed to solve unconstrained numerical optimization problems. The MDE algorithm employed random position updating and disturbance operation to replaces the traditional mutation operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the MDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


2013 ◽  
Vol 415 ◽  
pp. 309-313
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a new opposition-based modified differential evolution algorithm (OMDE) is proposed. This algorithm integrates the opposed-learning operation with the crossover operation to enhance the convergence of the algorithm and to prevent the algorithm from being trapped into the local optimum effectively. Besides, we employed a new strategy to dynamic adjust mutation rate (MR) and crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark functions tested, the OMDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


Author(s):  
M. R. Lohokare ◽  
S.S. Pattnaik ◽  
S. Devi ◽  
B.K. Panigrahi ◽  
S. Das ◽  
...  

Biogeography-Based Optimization (BBO) uses the idea of probabilistically sharing features between solutions based on the solutions’ fitness values. Therefore, its exploitation ability is good but it lacks in exploration ability. In this paper, the authors extend the original BBO and propose a hybrid version combined with ePSO (particle swarm optimization with extrapolation technique), namely eBBO, for unconstrained global numerical optimization problems in the continuous domain. eBBO combines the exploitation ability of BBO with the exploration ability of ePSO effectively, which can generate global optimum solutions. To validate the performance of eBBO, experiments have been conducted on 23 standard benchmark problems with a range of dimensions and diverse complexities and compared with original BBO and other versions of BBO in terms of the quality of the final solution and the convergence rate. Influence of population size and scalability study is also considered and results are compared with statistical paired t-test. Experimental analysis indicates that the proposed approach is effective and efficient and improves the exploration ability of BBO.


2010 ◽  
Vol 1 (3) ◽  
pp. 1-26 ◽  
Author(s):  
M. R. Lohokare ◽  
S.S. Pattnaik ◽  
S. Devi ◽  
B.K. Panigrahi ◽  
S. Das ◽  
...  

Biogeography-Based Optimization (BBO) uses the idea of probabilistically sharing features between solutions based on the solutions’ fitness values. Therefore, its exploitation ability is good but it lacks in exploration ability. In this paper, the authors extend the original BBO and propose a hybrid version combined with ePSO (particle swarm optimization with extrapolation technique), namely eBBO, for unconstrained global numerical optimization problems in the continuous domain. eBBO combines the exploitation ability of BBO with the exploration ability of ePSO effectively, which can generate global optimum solutions. To validate the performance of eBBO, experiments have been conducted on 23 standard benchmark problems with a range of dimensions and diverse complexities and compared with original BBO and other versions of BBO in terms of the quality of the final solution and the convergence rate. Influence of population size and scalability study is also considered and results are compared with statistical paired t-test. Experimental analysis indicates that the proposed approach is effective and efficient and improves the exploration ability of BBO.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Sign in / Sign up

Export Citation Format

Share Document