Reliability Optimization Analysis Based on Structure of Probabilistic Model

2014 ◽  
Vol 484-485 ◽  
pp. 457-461
Author(s):  
Xiang Fu Liu

The implementation of a project contains a lot of uncertainty, by their nature, random uncertainty, uncertainty and human factors (such as peoples limitations of understanding things and design methods, the use of analog approximate calculation results) due to the uncertainty of the future to better improve the structural reliability, this paper, the probability model reviewed structural reliability.

1994 ◽  
Vol 59 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Václav Dolejš ◽  
Ivan Machač ◽  
Petr Doleček

The paper presents a modification of the equations of Rabinowitsch-Mooney type for an approximate calculation of pressure drop in laminar flow of generalized Newtonian liquid through a straight channel whose cross section forms a simple continuous area. The suitability of the suggested procedure of calculation of pressure drop is demonstrated by the comparison of calculation results with both the published and original results of numerical solution and experiments.


1977 ◽  
Vol 47 (8) ◽  
pp. 545-551
Author(s):  
N. S. Kambo ◽  
K. R. Salhotra ◽  
A. Singh

A probabilistic model for the tuft-breakage process has been proposed by Kambo and Aziz. Estimation of the parameters and the application of the model are demonstrated in this study. The parameters of the model are estimated by a linearization method. To do this, two modes of tuft breakage have been studied to determine which one is better suited to explain the observed data. The results show that the model fits very well to the data on tuft breakage for two types of cotton.


2019 ◽  
Vol 13 (3) ◽  
pp. 533-545 ◽  
Author(s):  
Christopher Rini ◽  
Bruce C. Roberts ◽  
Didier Morel ◽  
Rick Klug ◽  
Benjamin Selvage ◽  
...  

Background: Limited published data exists quantifying the influence of human factors (HF) and pen needle (PN) design on delivery outcomes of pen injection systems. This preclinical in vivo study examines the impact of PN hub design and applied force against the skin during injection on needle penetration depth (NPD). Method: To precisely locate injection depth, PN injections (20 µl; 2 IU, U-100 volume equivalent) of iodinated contrast agent were administered to the flank of Yorkshire swine across a range of clinically relevant application forces against the skin (0.25, 0.75, 1.25, and 2.0 lbf). The NPD, representing in vivo needle tip depth in SC tissue, from four 32 G × 4 mm PN devices (BD Nano™ 2nd Gen and three commercial posted-hub PN devices; n = 75/device/force, 1200 total) was measured by fluoroscopic imaging of the resulting depot. Results: The reengineered hub design more closely achieved the 4 mm target NPD with significantly less variability ( P = .006) than commercial posted-hub PN devices across the range of applied injection forces. Calculations of IM (intramuscular) injection risk completed through in silico probability model, using NPD and average human tissue thickness measurements, displayed a commensurate reduction (~2-8x) compared to conventional PN hub designs. Conclusions: Quantifiable differences in injection depth were observed between identical labeled length PN devices indicating that hub design features, coupled with aspects of variable injection technique, may influence injection depth accuracy and consistency. The reengineered hub design may reduce the impact of unintended individual technique differences by improving target injection depth consistency and reducing IM injection potential.


2012 ◽  
Vol 166-169 ◽  
pp. 610-615
Author(s):  
Yong Yang ◽  
Kang An ◽  
Su Sheng Zeng ◽  
Jian Yang Xue

Based on the experiment results of five plain steel plate-light weight concrete hollow deck specimens, the design methods of the composite decks which mainly including the calculation method of the bearing capacity and calculation method of the flexural rigidity were introduced. In the paper, the bearing capacity and flexural rigidity of the composite at two orthogonal directions, which including the direction parallel to the pipes and the direction perpendicular to the pipes, were both introduced. The calculation results of the bearing capacity and middle-span deflection were in good agreement with those of the experimental results, and in the return calculation methods were verified. Therefore, the design methods and calculation methods were useful to the design of this new type composite deck.


2019 ◽  
Vol 36 (3) ◽  
pp. 1055-1078 ◽  
Author(s):  
Hailiang Su ◽  
Fengchong Lan ◽  
Yuyan He ◽  
Jiqing Chen

Purpose Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by the meta-model approximation, which leads to the inaccuracy of the optimization results of the reliability evaluation. Taking the local high efficiency of the proxy model, this paper aims to propose a local effective constrained response surface method (LEC-RSM) based on a meta-model. Design/methodology/approach The operating mechanisms of LEC-RSM is to calculate the index of the local relative importance based on numerical theory and capture the most effective area in the entire design space, as well as selecting important analysis domains for sample changes. To improve the efficiency of the algorithm, the constrained efficient set algorithm (ESA) is introduced, in which the sample point validity is identified based on the reliability information obtained in the previous cycle and then the boundary sampling points that violate the constraint conditions are ignored or eliminated. Findings The computational power of the proposed method is demonstrated by solving two mathematical problems and the actual engineering optimization problem of a car collision. LEC-RSM makes it easier to achieve the optimal performance, less feature evaluation and fewer algorithm iterations. Originality/value This paper proposes a new RSM technology based on proxy model to complete the reliability design. The originality of this paper is to increase the sampling points by identifying the local importance of the analysis domain and introduce the constrained ESA to improve the efficiency of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document