Hydrodynamic Impact on Pearl River Estuary from HZM Bridge

2014 ◽  
Vol 488-489 ◽  
pp. 475-478 ◽  
Author(s):  
Jie He ◽  
Wen Jie Xin

The HZM(Hongkong-Zhuhai-Macao) bridge connects Hongkong, Zhuhai and Macao district, and it strctchs across the Pearl River estuary. A lot of piers and three large artifical islands would have some impact on the hydrodynamic environment in the Pear River estuary. In this paper, a 2D tidal current numerical model is introduced to simulate the hydrodynamic impact from the HZM brdige. The simulated results show that the Hydrodynamic influence is concentrated on the 5.0 km range from downstream to upstream nearby the navigation zone and the 1.0 km range of bridge site in not-navigation zone, and the tidal range reduction is limited 0.03m and the tidal prism reduction is not more than 1% in the Lingding Sea after the HZM bridge constructed. Therefore, the HZM bridge has little influence on the distribution of hydrodynamic environment in the Pearl River estuary.

2019 ◽  
Vol 29 (4) ◽  
pp. 861-875
Author(s):  
Zeyu Zeng ◽  
William W. L. Cheung ◽  
Shiyu Li ◽  
Jiatang Hu ◽  
Ying Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document