Modal Simulation Analysis of Gatling Barrel

2014 ◽  
Vol 488-489 ◽  
pp. 947-950
Author(s):  
Ying Gao ◽  
Yu Cheng Bo ◽  
Ji Xing Huo

In order to improve the shooting accuracy of a gatling gun, the finite element model of gun barrel was established and tested by the modal computing, thus natural frequency and modal shape of previous 5 phases were calculated when the clamping support was placed in different places of the barrel. According to the reasonable power matching principle and the result of calculation, the dynamic characteristics of the gatling gun were analyzed, the result offers a reasonable basis for improving the design of the product.

2010 ◽  
Vol 163-167 ◽  
pp. 2131-2136 ◽  
Author(s):  
Jian Bo Chen ◽  
Bao Dong Liu ◽  
Peng Fei Li

Based on Miyamoto’s method, the natural frequency of prestressed box girder with corrugated steel webs considering the impact of external tendons was obtained. And the result was modified based on the finite element model. It shows that: the external tendons will reduce the natural frequency of bridge with reduced range of about 3%. Beneficial references were provided to the layout of external tendons in order to avoid the resonance between the box girder with corrugated steel webs and the external tendons.


2014 ◽  
Vol 900 ◽  
pp. 742-745 ◽  
Author(s):  
Yao Jie He ◽  
Bai Jing Qiu ◽  
Ya Fei Yang

In order to attenuate the deformation of spray boom, a finite element model built based on ANSYS, according to the reasults of numerical modal analysis and modal texting, the reliability of the finite element model was affirmed. Then, an isolator was introduced between spray boom and frame, a frame-isolator-spray boom model was built in ADAMS. The effect of the isolators which have different parameters was research, the reasult shows: The isolator has much effect on attenuating spray booms deformation, the stiffness of isolators spring dampers has little effect on spray booms deformation, but the damping of isolators spring dampers has effect on spray booms deformation.


Author(s):  
Youngin Choi ◽  
Seungho Lim ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) developed by KAERI includes components like a core, steam generators, coolant pumps, and a pressurizer inside the reactor vessel. Though the integrated structure improves the safety of the reactor, it can be excited by an earthquake and pump pulsations. It is important to identify dynamic characteristics of the reactor internals considering fluid-structure interaction caused by inner coolant for preventing damage from the excitations. Thus, the finite element model is constructed to identify dynamic characteristics and natural frequencies and mode shapes are extracted from this finite element model.


2019 ◽  
Vol 79 ◽  
pp. 01016
Author(s):  
Shicheng Hu ◽  
Jun Li

This article took the climbing formwork which constructed on the bridge at a height of 100 meters as the prototype, then established the finite element model and conducted modal analysis. The APDL language is used to load the wind load which is simulated by the Matlab programming then calculated the displacement and acceleration responses of the climbing formwork and further. The results show that the bending effect of the climbing formwork is more obvious. This calculation method of calculating the wind load, improve the anti-wind design method of the climbing formwork.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


Author(s):  
Qiwei Yang ◽  
Derrick Tate ◽  
Sang-Wook Bae

Although a large number of crash tests have been performed between passenger cars and rigid fixed traffic signs, the number of real tests focusing on crashworthiness of portable roll-up signs is still limited. Because a standard, portable roll-up sign contains at least three kinds of dissimilar materials, such as steel for the base, fiberglass for the batten, vinyl for the sign, and because the sign’s configuration is more complicated than a rigid fixed sign, it is important to simulate the behavior of portable roll-up signs in collision. In this paper, a fine-mesh finite element model precisely representing the portable roll-up sign was created and used together with a car model to simulate the process of impact with 0 and 90 degree orientation. The simulation was performed using LS-DYNA software. Techniques for creating the finite element model were discussed. Afterwards this finite element model, being validated and verified through real tests, can be used for parametric and/or robust design.


2013 ◽  
Vol 655-657 ◽  
pp. 1119-1122
Author(s):  
Sheng Lin ◽  
Chun Wang

A novel three-axis compliant mechanism is presented. Three original constraints are selected from the freedom and constraint complement topology chart. A compliant mechanism with three rotation freedoms is designed. Constraint 2 and Constraint 3 is designed as a whole to improve the precision and natural frequency. The finite element model is established. And the natural frequency and the main vibration mode are obtained. The deformation of the rotation axis is small. The input and output of the compliant mechanism is decoupled.


2010 ◽  
Vol 37-38 ◽  
pp. 127-130
Author(s):  
Da Ke Tian ◽  
Rong Qiang Liu ◽  
Zong Quan Deng ◽  
Hong Wei Guo

Analysis of dynamic characteristics is one of the important parts of structure analysis for space deployable antenna. In order to study the dynamic characteristics of truss structure for space deployable truss antenna, according to the structure composition, the finite element model of truss structure is built by using ANSYS software, and the modal analysis is carried out by finite element method, then the natural frequencies and the features of vibration modes are obtained. It is emphatically analyzed that the influence of structure parameters such as chords, vertical beams, diagonal beams and crossing cables on the first natural frequency, and the change curves of natural frequency are given. The results can provide the theoretical basis for the antenna’s structural optimization design and dynamic modification.


2018 ◽  
Vol 53 (5) ◽  
pp. 313-323 ◽  
Author(s):  
Jing Liu ◽  
Yajun Xu ◽  
Yimin Shao ◽  
Huifang Xiao ◽  
Hongwu Li

Dynamic characteristics of a planetary gear set can be greatly affected by a localized fault in the planet bearing. To understand the relationship between the dynamic characteristic of the planetary gear set and the localized fault sizes, a dynamic finite element model for a planetary gear set is developed. A localized fault is assumed to be located in the outer race of the planet bearing. The fault profile is defined as a rectangular one. To formulate the elastic deformations of the components and elastic contact deformations between the mating components, all components of the planetary gear set are considered as elastic bodies in the finite element model. A standard gravity is also considered in the finite element model. A Coulomb frictional model is used to formulate the frictional forces in the planetary gear set. Influences of the rotational velocity, moment, and fault width on the dynamic characteristics of the planetary gear set are discussed. The simulation results are compared with those from the previous method to validate the finite element model. It seems that the presented finite element model can be applied to simulate the dynamic characteristics of a planetary gear set caused by a localized fault in the outer race of the planet bearing.


2013 ◽  
Vol 765-767 ◽  
pp. 341-344
Author(s):  
Bai Qin ◽  
Chao Wu ◽  
Bo Zhang ◽  
Quan Fu Wang ◽  
Ya Juan Ji

The finite element model of rubber bush mountings is built up. And the value of the reduced tilting stiffness is obtained directly by solving the model. The simulation data and the experimental data can be seen to agree very closely. This fully proves the reliability of the simulation model. Based on this simulation model, which has been parameterized, the influence of the axial length and inner and outer radii on the reduced tilting stiffness of rubber bush is studied by using the co-simulation of MATLAB and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document