Analysis of Dynamic Characteristics of Space Deployable Antenna Based on ANSYS

2010 ◽  
Vol 37-38 ◽  
pp. 127-130
Author(s):  
Da Ke Tian ◽  
Rong Qiang Liu ◽  
Zong Quan Deng ◽  
Hong Wei Guo

Analysis of dynamic characteristics is one of the important parts of structure analysis for space deployable antenna. In order to study the dynamic characteristics of truss structure for space deployable truss antenna, according to the structure composition, the finite element model of truss structure is built by using ANSYS software, and the modal analysis is carried out by finite element method, then the natural frequencies and the features of vibration modes are obtained. It is emphatically analyzed that the influence of structure parameters such as chords, vertical beams, diagonal beams and crossing cables on the first natural frequency, and the change curves of natural frequency are given. The results can provide the theoretical basis for the antenna’s structural optimization design and dynamic modification.

2010 ◽  
Vol 163-167 ◽  
pp. 2131-2136 ◽  
Author(s):  
Jian Bo Chen ◽  
Bao Dong Liu ◽  
Peng Fei Li

Based on Miyamoto’s method, the natural frequency of prestressed box girder with corrugated steel webs considering the impact of external tendons was obtained. And the result was modified based on the finite element model. It shows that: the external tendons will reduce the natural frequency of bridge with reduced range of about 3%. Beneficial references were provided to the layout of external tendons in order to avoid the resonance between the box girder with corrugated steel webs and the external tendons.


2014 ◽  
Vol 488-489 ◽  
pp. 947-950
Author(s):  
Ying Gao ◽  
Yu Cheng Bo ◽  
Ji Xing Huo

In order to improve the shooting accuracy of a gatling gun, the finite element model of gun barrel was established and tested by the modal computing, thus natural frequency and modal shape of previous 5 phases were calculated when the clamping support was placed in different places of the barrel. According to the reasonable power matching principle and the result of calculation, the dynamic characteristics of the gatling gun were analyzed, the result offers a reasonable basis for improving the design of the product.


2013 ◽  
Vol 345 ◽  
pp. 429-433
Author(s):  
Rui Tian

The use of 3D design software Inventor, established the mechanical structure and the finite element model of laser anti-counterfeit platform focusing mechanism in production manufacturing engineering. Through doing the modal analysis and static analysis of the mechanism, we found the natural frequency and Vibration modes of the structure of focusing mechanism, and proved the mechanism design was reliable and stable to avoid the failure of focusing caused by mechanical resonance and which provided the basis for further optimization design for production manufacturing engineering.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2016 ◽  
Vol 693 ◽  
pp. 1479-1485 ◽  
Author(s):  
Jian Zhao ◽  
Xue Wu Hong ◽  
Ming Yu ◽  
Zhi Peng Gao ◽  
Wen Jin Wang

Shield machine plays an indispensable role in the mining, transportation, underground engineering, hydraulic engineering and municipal construction. Shield cutters of shield construction process often appears serious deformation, damage that leads to engineering accident, or even a threat to human life and safety. In order to provide high precise data for shield machine cutter tool dynamic modification and to diagnose the shield machine cutter tool fault, the dynamic characteristic of the shield machine cutter tool system, which is the main component of a shield machine cutter tool, has to be obtained precisely. The compute modal parameters identification method base on the finite element method is proposed to identify the modal parameters of the shield machine cutter tool. By means of Solidwords software, the knife ring structure of the shield machine tool and the tool is designed; then build the tool the finite element model, modal analysis, obtained the dynamic characteristics, and find out the weak link, put forward the improvement measures and prolong its life. Therefore, the study on dynamic characteristics of shield machine cutter, for the optimization design of domestic tool, has an important significance improve tool life.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


Author(s):  
Tianyu Wang ◽  
Mohammad Noori ◽  
Wael A. Altabey

Over the past two decades, extensive research has been carried out in the field of structural health monitoring for damage detection in structural systems. Some crack detection methods are based on the finite element model of a beam and use vibration data are developed. These methods identify the crack by updating of the finite element model according to the vibration data of structure. This paper proposes a novel method for crack detection in Euler–Bernoulli beams based on the closed-form solution of mode shapes using Bayesian inference. The expression of vibration modes is derived analytically with the crack parameters as unknown variables. Subsequently, the Bayesian inference is used to obtain the probability density function of crack parameters and to evaluate the uncertainty of the modes. Finally, the method is applied to a series of numerical examples, including a beam with a single-crack and multi-cracks, to verify the effectiveness of this method.


2012 ◽  
Vol 184-185 ◽  
pp. 356-359
Author(s):  
Jiang Miao Yi ◽  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Huan Lin

The finite element model of worktable system is created and modal analysis is made with ANSYS Workbench by taking DVG850 high-speed vertical machining center worktable system for example. We make modal analysis of single-screw strength general reinforcement worktable system and get the natural frequency and the vibration mode.Then in order to improve the system's natural frequency, the scheme of dual-screw worktable system is put forward. Also natural frequency and vibration mode is got. Finally, it is proved that the performance of dual-screw worktable system is significantly better than the single-screw one. This provides a reliable reference for further study on dynamic analysis of worktable system.


Sign in / Sign up

Export Citation Format

Share Document