Reservoir-Induced Seismicity in the Three Gorges Reservoir Area

2014 ◽  
Vol 501-504 ◽  
pp. 1477-1485
Author(s):  
Su Mei Liu ◽  
Xiang Dong Xie

As a region with little or very low level background seismicity, the impoundment of the Three Gorges Reservoir in June 2003 was related to increasing reservoir-induced seismicity. Analysis of the spatial pattern of seismicity showed that a majority of the seismicity was associated with the heavily fractured, deep crustal Jiuwanxi Fault, especially in regions of permeable Carbonate rocks formations. Analysis of the temporal pattern of the seismicity and a comparison with the filling history of the reservoir showed that the frequency and intensity of induced seismicity started at low level accompanying the impoundment of the Three Gorges Reservoir, and then increased with the increasing of water level and decreased thereafter. The amplitude of fluctuation of water level was found to be related to the frequency and intensity of induced seismicity. The pore pressure diffusion plays an important role in reservoir induced seismicity.

2020 ◽  
Vol 12 (20) ◽  
pp. 3385
Author(s):  
Chao Zhou ◽  
Ying Cao ◽  
Kunlong Yin ◽  
Yang Wang ◽  
Xuguo Shi ◽  
...  

Landslides are a common natural hazard that causes casualties and unprecedented economic losses every year, especially in vulnerable developing countries. Considering the high cost of in-situ monitoring equipment and the sparse coverage of monitoring points, the Sentinel-1 images and Interferometric Synthetic Aperture Radar (InSAR) technique were used to conduct landslide monitoring and analysis. The Muyubao landslide in the Three Gorges Reservoir area in China was taken as a case study. A total of 37 images from March 2016 to September 2017 were collected, and the displacement time series were extracted using the Stanford Method for Persistent Scatterer (StaMPS) small baselines subset method. The comparison to global positioning system monitoring results indicated that the InSAR processing of the Muyubao landslide was accurate and reliable. Combined with the field investigation, the deformation evolution and its response to triggering factors were analyzed. During this monitoring period, the creeping process of the Muyubao landslide showed obvious spatiotemporal deformation differences. The changes in the reservoir water level were the trigger of the Muyubao landslide, and its deformation mainly occurred during the fluctuation period and high-water level period of the reservoir.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Peiyin Yuan ◽  
Pingyi Wang ◽  
Yu Zhao

The rock and soil on the shore of the bank are unsteady and slide in a poor environment, affecting the water body in the river channel and forming landslide-generated tsunamis. This directly impacts the navigation of vessels in the river. In this study, the river course and sailing ships in the Wanzhou section of the Three Gorges Reservoir area were taken as the research objects. Through a physical model test with a large scale ratio, the variation of the water level at the monitoring points in the channel was determined, and the variation law of the water level in the whole channel was derived and converted into a prototype through the scale ratio. A model of the ship’s manoeuvring motion was established, and the ship’s manoeuvring motion characteristics in still water were verified. The correlations between the maximum roll angle and the navigation position, sailing speed, and rudder angle were investigated in detail. A safety risk response theory of navigation in the area of landslide-generated tsunamis was proposed, and a scientific basis was provided for the safe navigation of ships in the Three Gorges Reservoir area.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3427
Author(s):  
Qingqing Tang ◽  
Daming Tan ◽  
Yongyue Ji ◽  
Lingyun Yan ◽  
Sidong Zeng ◽  
...  

The dynamics of the mid-channel bars (MCBs) in the Three Gorges Reservoir (TGR) were substantially impacted by the large water-level changes due to the impoundments of the TGR. However, it is still not clear how the morphology of the MCBs changed under the influence of water level and hydrological regime changes induced by the impoundments and operation of the TGR. In this work, the MCBs in the TGR were retrieved using Landsat remote sensing images from 1989 to 2019, and the spatio-temporal variations in the number, area, morphology and location of the MCBs during different impoundment periods were investigated. The results showed that the number and area of MCBs changed dramatically with water-level changes, and the changes were dominated by MCBs with an area less than 0.03 km2 and larger than 1 km2. The area of MCBs decreased progressively with the rising water level, and the number generally showed a decreasing trend, with the minimum number occurring at the third stage when the water level reached 139 m, resulting in the maximum average area at this period. The ratio of length to width of the MCBs generally decreased with the changes in hydrological and sediment regimes, leading to a shape adjustment from narrow–long to relatively short–round with the rising of the water level. The water impoundments of the TGR led to the migration of the dominant area from the upper section to the middle section of the TGR and resulted in a more even distribution of MCBs in the TGR. The results improve our understanding of the mechanisms of the development of MCBs in the TGR under the influence of water impoundment coupled with the annually cyclic hydrological regime and longer periods of inundation and exposure.


Sign in / Sign up

Export Citation Format

Share Document