Image Characteristics Indexing Based on X-Tree

2014 ◽  
Vol 513-517 ◽  
pp. 3761-3764
Author(s):  
Rong Hua Gao ◽  
Hua Rui Wu

Image data set are usually very large, which might consist of millions of image objects, it is essential to use an efficient and effective indexing technique to facilitate speedy searching. The features can be expressed in terms of high-dimensional vector data which can be compared with a given query for similarity between them. It is more important that the image database should be preprocessed and establish indexing to improve retrieval efficiency. In this paper, the method of improved X-tree is proposed, design and implementation of a high dimensional index application to facilitate the speedy searching in feature based image information retrieval. Compared by retrieval efficiency and retrieval result, it is convincingly proved that hierarchical index structure based on clustering is efficient and applicable in image characteristics indexing.

Author(s):  
Ravi Patel ◽  
Manas Vyas ◽  
Abhishek Parmar ◽  
Utpal Patel

Traffic has been a major issue at intersections throughout the world, here a technique is proposed to reduce manpower required to handle the traffic and remove static timers from intersections. Proposed system is consisting of simple computer device with CCTV. It works by analyse traffic condition from video input and then count vehicles to manipulate signal timer which avoid traffic collision and maintain traffic flow. Therefor the first step in this process is taking video input from mounted CCTV camera and then detection of cars. The system uses Haar like features, which is mainly made for face detection. Haar feature-based cascade classifier is effective object detection technique. It has data set containing positive and negative image data which help agent to identify target object. Result shows this system is more effective in detection of cars compare to existing systems.


Author(s):  
Jae Soo Yoo ◽  
Myung Keun Shin ◽  
Seok Hee Lee ◽  
Kil Seong Choi ◽  
Ki Hyung Cho ◽  
...  

ETRI Journal ◽  
2000 ◽  
Vol 22 (2) ◽  
pp. 32-42
Author(s):  
Jang Sun Lee Lee ◽  
Jae Soo Yoo Yoo ◽  
Seok Hee Lee Lee ◽  
Myung-Joon Kim Kim

2015 ◽  
Vol 09 (02) ◽  
pp. 239-259
Author(s):  
Abir Gallas ◽  
Walid Barhoumi ◽  
Ezzeddine Zagrouba

The user's interaction with the retrieval engines, while seeking a particular image (or set of images) in large-scale databases, defines better his request. This interaction is essentially provided by a relevance feedback step. In fact, the semantic gap is increasing in a remarkable way due to the application of approximate nearest neighbor (ANN) algorithms aiming at resolving the curse of dimensionality. Therefore, an additional step of relevance feedback is necessary in order to get closer to the user's expectations in the next few retrieval iterations. In this context, this paper details a classification of the different relevance feedback techniques related to region-based image retrieval applications. Moreover, a technique of relevance feedback based on re-weighting regions of the query-image by selecting a set of negative examples is elaborated. Furthermore, the general context to carry out this technique which is the large-scale heterogeneous image collections indexing and retrieval is presented. In fact, the main contribution of the proposed work is affording efficient results with the minimum number of relevance feedback iterations for high dimensional image databases. Experiments and assessments are carried out within an RBIR system for "Wang" data set in order to prove the effectiveness of the proposed approaches.


Afrika Focus ◽  
1991 ◽  
Vol 7 (1) ◽  
pp. 15-48
Author(s):  
Beata Maria De Vliegher

The mapping of the land use in a tropical wet and dry area (East-Mono, Central Togo) is made using remote sensing data, recorded by the satellite SPOT. The negative, multispectral image data set has been transferred into positives by photographical means and afterwards enhanced using the diazo technique. The combination of the different diazo coloured images resulted in a false colour composite, being the basic document for the visual image interpretation. The image analysis, based upon differences in colour and texture, resulted in a photomorphic unit map. The use of a decision tree including the various image characteristics allowed the conversion of the photomorphic unit map into a land cover map. For this, six main land cover types could be differentiated resulting in 16 different classes of the final map.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2020 ◽  
Vol 33 (6) ◽  
pp. 838-844
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Marc Hohenhaus ◽  
...  

OBJECTIVEIntraoperative 3D imaging and navigation is increasingly used for minimally invasive spine surgery. A novel, noninvasive patient tracker that is adhered as a mask on the skin for 3D navigation necessitates a larger intraoperative 3D image set for appropriate referencing. This enlarged 3D image data set can be acquired by a state-of-the-art 3D C-arm device that is equipped with a large flat-panel detector. However, the presumably associated higher radiation exposure to the patient has essentially not yet been investigated and is therefore the objective of this study.METHODSPatients were retrospectively included if a thoracolumbar 3D scan was performed intraoperatively between 2016 and 2019 using a 3D C-arm with a large 30 × 30–cm flat-panel detector (3D scan volume 4096 cm3) or a 3D C-arm with a smaller 20 × 20–cm flat-panel detector (3D scan volume 2097 cm3), and the dose area product was available for the 3D scan. Additionally, the fluoroscopy time and the number of fluoroscopic images per 3D scan, as well as the BMI of the patients, were recorded.RESULTSThe authors compared 62 intraoperative thoracolumbar 3D scans using the 3D C-arm with a large flat-panel detector and 12 3D scans using the 3D C-arm with a small flat-panel detector. Overall, the 3D C-arm with a large flat-panel detector required more fluoroscopic images per scan (mean 389.0 ± 8.4 vs 117.0 ± 4.6, p < 0.0001), leading to a significantly higher dose area product (mean 1028.6 ± 767.9 vs 457.1 ± 118.9 cGy × cm2, p = 0.0044).CONCLUSIONSThe novel, noninvasive patient tracker mask facilitates intraoperative 3D navigation while eliminating the need for an additional skin incision with detachment of the autochthonous muscles. However, the use of this patient tracker mask requires a larger intraoperative 3D image data set for accurate registration, resulting in a 2.25 times higher radiation exposure to the patient. The use of the patient tracker mask should thus be based on an individual decision, especially taking into considering the radiation exposure and extent of instrumentation.


2019 ◽  
Vol 11 (10) ◽  
pp. 1157 ◽  
Author(s):  
Jorge Fuentes-Pacheco ◽  
Juan Torres-Olivares ◽  
Edgar Roman-Rangel ◽  
Salvador Cervantes ◽  
Porfirio Juarez-Lopez ◽  
...  

Crop segmentation is an important task in Precision Agriculture, where the use of aerial robots with an on-board camera has contributed to the development of new solution alternatives. We address the problem of fig plant segmentation in top-view RGB (Red-Green-Blue) images of a crop grown under open-field difficult circumstances of complex lighting conditions and non-ideal crop maintenance practices defined by local farmers. We present a Convolutional Neural Network (CNN) with an encoder-decoder architecture that classifies each pixel as crop or non-crop using only raw colour images as input. Our approach achieves a mean accuracy of 93.85% despite the complexity of the background and a highly variable visual appearance of the leaves. We make available our CNN code to the research community, as well as the aerial image data set and a hand-made ground truth segmentation with pixel precision to facilitate the comparison among different algorithms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
◽  
Elmar Kotter ◽  
Luis Marti-Bonmati ◽  
Adrian P. Brady ◽  
Nandita M. Desouza

AbstractBlockchain can be thought of as a distributed database allowing tracing of the origin of data, and who has manipulated a given data set in the past. Medical applications of blockchain technology are emerging. Blockchain has many potential applications in medical imaging, typically making use of the tracking of radiological or clinical data. Clinical applications of blockchain technology include the documentation of the contribution of different “authors” including AI algorithms to multipart reports, the documentation of the use of AI algorithms towards the diagnosis, the possibility to enhance the accessibility of relevant information in electronic medical records, and a better control of users over their personal health records. Applications of blockchain in research include a better traceability of image data within clinical trials, a better traceability of the contributions of image and annotation data for the training of AI algorithms, thus enhancing privacy and fairness, and potentially make imaging data for AI available in larger quantities. Blockchain also allows for dynamic consenting and has the potential to empower patients and giving them a better control who has accessed their health data. There are also many potential applications of blockchain technology for administrative purposes, like keeping track of learning achievements or the surveillance of medical devices. This article gives a brief introduction in the basic technology and terminology of blockchain technology and concentrates on the potential applications of blockchain in medical imaging.


Sign in / Sign up

Export Citation Format

Share Document