A Survey on Localization Algorithms in Wireless Sensor Networks

2014 ◽  
Vol 530-531 ◽  
pp. 15-18 ◽  
Author(s):  
Lu Gao ◽  
Zhong Min Li

In the applications based on Wireless Sensor Networks (WSNs) , localization is one of the most fundamental and important technologies if the accurate location information cant be determined, these application cant be accomplished. Then main idea in localization algorithms is that every unknown node in WSN can localize itself by position information from the landmarks or other nodes. in the last years localization is still a hot field and some new algorithms are proposed. In this paper, the localization algorithms are classified on the basis of the way to get position information, and a simple analysis is present. the paper are ended by discussing some open issues.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Li ◽  
Xiaotian Yu ◽  
He Xu ◽  
Jiewei Qian ◽  
Lu Dong ◽  
...  

Secure localization has become very important in wireless sensor networks. However, the conventional secure localization algorithms used in wireless sensor networks cannot deal with internal attacks and cannot identify malicious nodes. In this paper, a localization based on trust valuation, which can overcome a various attack types, such as spoofing attacks and Sybil attacks, is presented. The trust valuation is obtained via selection of the property set, which includes estimated distance, localization performance, position information of beacon nodes, and transmission time, and discussion of the threshold in the property set. In addition, the robustness of the proposed model is verified by analysis of attack intensity, localization error, and trust relationship for three typical scenes. The experimental results have shown that the proposed model is superior to the traditional secure localization models in terms of malicious nodes identification and performance improvement.


Author(s):  
Fengrong Han ◽  
Izzeldin Ibrahim Mohamed Abdelaziz ◽  
Xinni Liu ◽  
Kamarul Hawari Ghazali ◽  
Hao Wang

Location information is prerequisite for wireless sensor networks (WSNs) monitoring and control applications, since there is no meaning without position information for collected data. Distance vector hop (DV-Hop) localization algorithm as the typical range-free algorithm that has been widely applied in various applications. Nowadays, the research on range-free localization for WSNs is mostly based on two-dimensional (2D) space. Hence, there are few surveys concentrated on range-free localization in three-dimensional (3D) WSNs. This motivated us to present an extensive overview of enhanced DV-Hop localization algorithms in 3D WSNs. This paper focused on critical challenge between 2D and 3D in localization model, representative range-free 3D localization technique surveys. Moreover, a comprehensive taxonomy of most essential enhanced methods applied in 3D DV-Hop is illustrated. A considerable comparison in term of localization error, computational complexity and node type is given. Future research directions dealing with localization under 3D DV-Hop is also discussed.


Author(s):  
Amit Sharma ◽  
Pradeep K. Singh

Background: In Wireless Sensor Networks, Localization is the most dynamic field for research. The data extracted from the sensor nodes that carries physical location information is very much helpful in WSNs as it is useful in major applications such as for the purpose of monitoring of any environment, tracking and for the detection purpose. Localization is known as the estimation of unknown node locations and its positions by communicating through localized nodes as well as unlocalized nodes. Objective: The aim of this study is to present classification of various localization algorithms and to compare them. Methods: The prime consideration is to know that how localization affects the network lifetime and how these algorithms work for increasing the lifetime of a network in a severe. Results: This paper also aims for finding the position of the node with respect to range based, anchor based and distributed localization techniques for harsh environments. Additionally, this paper also features the concern that occurs with these localization techniques. Conclusion: The technique that gives highly accurate location coordinates and having less hardware cost is distributed RSSI based localization algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Jiang ◽  
Xin Wang ◽  
Li Zhang

According to the application of range-free localization technology for wireless sensor networks (WSNs), an improved localization algorithm based on iterative centroid estimation is proposed in this paper. With this methodology, the centroid coordinate of the space enclosed by connected anchor nodes and the received signal strength indication (RSSI) between the unknown node and the centroid are calculated. Then, the centroid is used as a virtual anchor node. It is proven that there is at least one connected anchor node whose distance from the unknown node must be farther than the virtual anchor node. Hence, in order to reduce the space enclosed by connected anchor nodes and improve the location precision, the anchor node with the weakest RSSI is replaced by this virtual anchor node. By applying this procedure repeatedly, the localization algorithm can achieve a good accuracy. Observing from the simulation results, the proposed algorithm has strong robustness and can achieve an ideal performance of localization precision and coverage.


Author(s):  
VINOD KUMAR ◽  
SATYENDRA YADAV ◽  
ASHUTOSH KUMAR SINGH

The most fundamental problem of wireless sensor networks is localization (finding the geographical location of the sensors). Most of the localization algorithms proposed for sensor networks are based on Sequential Monte Carlo (SMC) method. To achieve high accuracy in localization it requires high seed node density and it also suffers from low sampling efficiency. There are some papers which solves this problems but they are not energy efficient. Another approach The Bounding Box method was used to reduce the scope of searching the candidate samples and thus reduces the time for finding the set of valid samples. In this paper we propose an energy efficient approach which will further reduce the scope of searching the candidate samples, so now we can remove the invalid samples from the sample space and we can introduce more valid samples to improve the localization accuracy. We will consider the direction of movement of the valid samples, so that we can predict the next position of the samples more accurately, hence we can achieve high localization accuracy.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Dongming Peng ◽  
Honggang Wang ◽  
Hamid Sharif ◽  
Hsiao-Hwa Chen

Resource allocation for multimedia selective encryption and energy efficient transmission has not been fully investigated in literature for wireless sensor networks (WSNs). In this article, we propose a new cross-layer approach to optimize selectively encrypted image transmission quality in WSNs with strict energy constraint. A new selective image encryption approach favorable for unequal error protection (UEP) is proposed, which reduces encryption overhead considerably by controlling the structure of image bitstreams. Also, a novel cross-layer UEP scheme based on cipher-plain-text diversity is studied. In this UEP scheme, resources are unequally and optimally allocated in the encrypted bitstream structure, including data position information and magnitude value information. Simulation studies demonstrate that the proposed approach can simultaneously achieve improved image quality and assured energy efficiency with secure transmissions over WSNs.


Author(s):  
Dan Pescaru ◽  
Daniel-Ioan Curiac

This chapter presents the main challenges in developing complex systems built around the core concept of Video-Based Wireless Sensor Networks. It summarizes some innovative solutions proposed in scientific literature on this field. Besides discussion on various issues related to such systems, the authors focus on two crucial aspects: video data processing and data exchange. A special attention is paid to localization algorithms in case of random deployment of nodes having no specific localization hardware installed. Solutions for data exchange are presented by highlighting the data compression and communication efficiency in terms of energy saving. In the end, some open research topics related with Video-Based Wireless Sensor Networks are identified and explained.


Sign in / Sign up

Export Citation Format

Share Document