Air Bubble Size Measurement in a Laboratory Flotation Cell

2014 ◽  
Vol 530-531 ◽  
pp. 160-165
Author(s):  
Xiao Feng Xie ◽  
Rong Gang Li

Air bubble size distribution in a laboratory flotation cell was investigated by using of image analysis technology in this paper. Results showed that it was feasible to determine the air bubble size according to image analysis software. For a porous media-aerated flotation cell, bubble size was dependent on poles size of porous media. Furthermore, operating parameters of the cell could affect the size. Mean bubble diameters increased with increasing of air flow rate. In contrast, it decreased when adding deinking agent. Its decreasing with increasing pulp flow rate under given conditions illustrated the fact that proper turbulence strength at the inlet of air bubbles was favorable for reducing bubble size. Gas holdup increased with increasing air flow rate to some extent, but it had a peak value. Gas holdup would rise obviously when deinking agent existed. An efficient approach to enhancing bubble surface area flux was to increase air flow rate and keep small bubble size at the same time.

1976 ◽  
Vol 1 (15) ◽  
pp. 170
Author(s):  
Nabil Ismail

Based on a literature review of theoretical and experimental work on air-bubble systems, guidelines for the ideal design of submerged distributors discharging air into water are presented. A comprehensive study of gas-liquid dispersions was carried out to find out the effect of physical properties, distributor arrangement, and the air flow rate, on the flow pattern within the jet. This review revealed that the distributor arrangement largely influences the characteristics of the dispersion within the zone of flow establishment. Also, upon analyzing the experimental results of air-water systems, it was found that the zone of flow establishment extends to greater distances of the water depth than that in the case of one-phase turbulent plumes. Furthermore, the experimental results showed that the efficiency of air bubble plumes can be increased by the proper design of the distributor. Recommendations for the distributor design are given, which include, diameter of orifices and their spacings, pressure drop across orifices, number of manifolds, and the maximum air flow rate.


Author(s):  
А. Volnenko ◽  
◽  
А. Leudanski ◽  
Y. Apimakh ◽  
B. Korganbayev ◽  
...  

For separation of plastic wastes (polyamide (PA), acrylonitrile butadiene styrene (ABS) and polystyrene (PS), a flotation method is proposed. Using this method, the effect of concentration of surface-active substances (surfactants), which were used as polidocanol, sulphanole and a mixture of surfactants containing sodium laureth sulfate and diethanolamide, was studied. The research results analysis of the flotation separation of a mixture of crushed plastic wastes was carried out according to the calculated values of the extraction of a floated component ε and the purity of a concentrate β. It was noted that the maximum extraction of the floated component depends on the polymer and surfactant type. A mixture of surfactants at lower concentrations allows to achieve greater extraction of the floated component with less foaming ability. The research results on the extraction of polystyrene from the air flow rate at various concentrations of surfactants’ mixture show that the extraction has a maximum at a certain air flow rate. At low air flow rates, the working volume of liquid is not saturated enough with gas bubbles. If the optimal value of air flow rates is exceeded, many gas bubbles are formed that are not involved in the flotation process. The research results on the extraction of polystyrene from the aerated liquid layer height at various concentrations of surfactants’ mixture show that, at a low height of the aerated liquid layer, the probability of collision of a plastic particle with an air bubble is low and some potentially floated particles seek the bottom of an apparatus without having time to collide with an air bubble. When assessing the influence of liquid temperature on the flotation process, it was found that increasing the liquid temperature above 20°C leads to a sharp decrease in ABS and PS extraction. This is explained by the fact that the dependence of the surfactants’ foaming ability on the temperature is characterized by solubility curves and for most surfactants they have an extremum.


2013 ◽  
Author(s):  
Anil R. Kommareddy ◽  
Gary A. Anderson ◽  
Stephen P. Gent ◽  
Ghazi S. Bari

2019 ◽  
Vol 19 (01) ◽  
pp. 1850048
Author(s):  
Sabereh Nazari ◽  
Sied Ziaedin Shafaei ◽  
Mahdi Gharabaghi ◽  
Rahman Ahmadi ◽  
Behzad Shahbazi ◽  
...  

This study investigates the influence of bubble size distribution and operational parameters on the flotation behavior of quartz coarse particles. The parameters evaluated during this study include the different bubble size distribution, air flow rate and impeller speed. Experiments were conducted at three different bubble sizes: 110, 171 and 293[Formula: see text]nm as db(32). Then, the results were compared with common air bubbles of the conventional flotation process. The bubble size distribution was measured using a laser particle size analyzer (LPSA). Results showed that the recovery of [Formula: see text]m particles increased in presence of nano bubbles (NBs) up to 25% compared to the conventional flotation. The maximum recovery of 95.59% was obtained using NBs size of 171[Formula: see text]nm at the impeller speed of 900[Formula: see text]rpm and air flow rate of 30[Formula: see text]l/h. It was also indicated that NBs caused an increasing in flotation recovery for all the samples in any size ranges in comparison with the conventional method.


2016 ◽  
Vol 867 ◽  
pp. 66-70
Author(s):  
Nantawat Demeekul ◽  
Lek Sikong ◽  
Manoon Masniyom

This study aims to investigate the effect of flotation operating parameters such as immersion depth of downcomer and air flow rate on performance of barite minerals separation. The barite minerals utilized in this experiment mainly consist of barite and gangue minerals such as quartz, kaolinite, illite and microcline having the chemical compositions of 63.12% BaSO4, 18.22% SiO2, 13.49%Al2O3, 1.02% K2O, 0.69% Fe2O3 and 3.46% others and the particle size (d80) of about 37 microns. In the flotation cell, the air bubbles were generated using designed porous materials. The flotation of barite minerals were carried out in an alkaline condition at pH 9 with sodium oleate collector and terpineol frother. It was found that concentrate grades of barite for the air flow rates of 20, 30 and 40 L/min were nearly constant about 70% BaSO4 at the immersion depths of 5 and 10 cm but it increased at the depth of 15 cm. The immersion depth of 5 and 10 cm seems to have no effect on grade of concentrate while the depth of 15 to have such effect. The air flow rate had an effect on concentrate grade when 15 cm immersion depth was used. The optimum air flow rate of 30 L/min gave concentrate grade of 85% BaSO4 with the recovery and enrichment ratio of 73% and 1.3, respectively.


Sign in / Sign up

Export Citation Format

Share Document