A Review of Residual Life Prediction for Remanufacturing of Machine Tool

2014 ◽  
Vol 552 ◽  
pp. 133-138 ◽  
Author(s):  
Zhen Yu Han ◽  
Guang Нu Liu ◽  
Hong Нa Fu

A growing concern about the environment problems, especially about the waste, carbon emissions and landfill, has spurred research into the field of remanufacturing. This paper mainly focuses on the residual life prediction in the remanufacturing of machine tools, which is an important step of remanufacturing process. A system analysis and synthesis is performed in the fields of testing data collection and data analysis and calculation, which are the two important components of residual life prediction. Some non-destructive testing technologies for data collection and some algorithms for data analysis are summarized and made comparison. In addition, this paper also aims at giving a perspective in such area in the future.

2005 ◽  
Vol 02 (01) ◽  
pp. 63-76
Author(s):  
M. Z. ISKANDARANI ◽  
N. F. SHILBAYEH

An innovative NDT (non-destructive testing) technique for interrogating materials for their defects has been developed successfully. The technique has a novel approach to data analysis by employing intensity, RGB signal re-mix and wavelength variation of a thermally generated IR-beam onto the specimen under test which can be sensed and displayed on a computer screen as an image. Specimen inspection and data analysis are carried out through pixel level re-ordering and shelving techniques within a transformed image file using a sequence grouping and regrouping software system, which is specifically developed for this work. The interaction between an impact damaged RIM composite structure and thermal energy is recorded, analyzed, and modeled using an equivalent Electronic circuit. Effect of impact damage on the integrity of the composite structure is also discussed.


2016 ◽  
Vol 879 ◽  
pp. 1841-1846 ◽  
Author(s):  
Peter Starke ◽  
Hao Ran Wu ◽  
Christian Boller

The comprehensive characterization of the change in metallic materials’ microstructure due to an applied load is of prime importance for the understanding of basic fatigue mechanisms or more general damage evolution processes. If those mechanisms and processes are to be understood to a much greater extent, advanced fatigue life calculation methods being far away from linear damage accumulation models, have to be realized providing more than “classic fatigue data” only. Among others the PHYBAL (physically based fatigue life calculation) method including current enhancements and a thereon-based development named SteBLife (step-bar fatigue life approach) have been developed over the last 10 years. These methods allow the efforts in experimentation to be reduced by more than 90 % and therefore offer the possibility to take further fatigue relevant parameters into account. This therefore allows a variety of S,N-curves dependent on those fatigue relevant parameters to be generated with those methods easily establishing a multidimensional dataset. To just name a few examples of those parameters such as the influence of temperature, loading conditions, geometry as well as thermal and mechanical ageing processes on the fatigue behavior can now be calculated in accordance to a process being straightforward leading to an important step with regard to improving the efficiency of assessing structural components. Consequently, safety factors can be defined more in accordance to structural needs, being of highest interest with respect to the increasing number of ageing infrastructure such as highways, bridges or others. A lot of this ageing infrastructure has a strong need to be managed with respect to its structural integrity and the engineering community therefore tries the residual life of this infrastructure to be determined as appropriate as possible. In that context non-destructive testing parameters are increasingly considered to characterize a metallic material’s microstructure allowing more precise information to be obtained regarding the actual damage condition and the integrity of a component. The paper will address the high capability of non-destructive testing techniques for the evaluation of damage evolution processes also with respect to mechanism based fatigue as well as residual life calculations according to PHYBAL and SteBLife.


2021 ◽  
pp. 80-87
Author(s):  
T. G. Galieva ◽  
◽  
D. A. Ivanov ◽  
M. F. Sadykov ◽  
A. V. Golenishchev-Kutuzov ◽  
...  

Measurement of partial discharges (PD) is a generally accepted method of diagnosing the insulation of electrical equipment worldwide. Today, the trend is to move from conventional offline testing to online monitoring to predict the service life of insulation. For testing and calibration of the developed new methods with the contact method, a laboratory stand has been developed in accordance with GOST R 55191-2012 (IEC 60270:2000). The article suggests the use of acoustic and electromagnetic methods for a system of continuous non-contact non-destructive testing of the technical condition of insulation equipment, which will allow monitoring insulation equipment online and predicting its residual life. On their basis, a system of «on-line» diagnostics of high-voltage insulators has been developed.


2014 ◽  
Vol 941-944 ◽  
pp. 1625-1628 ◽  
Author(s):  
Hong Xun Wang ◽  
Wei Fang Zhang ◽  
Tian Jiao Liu

In recent years, the key research on thermal barrier coatings (TBCs) lies in the performance improvement of materials as well as structure and process improvement, and achieves new progresses. The difficulty is application of reliability in TBCs. Researchers are exploring that employing non-destructive testing (NDT) and life prediction model on TBCs to conduct a comprehensive and real-time detection and predict the life, so as to improve the safety of TBCs in service process.


Sign in / Sign up

Export Citation Format

Share Document