Gravitational Particle Swarm Optimization Localization Algorithm for Wireless Sensor Network Nodes

2014 ◽  
Vol 556-562 ◽  
pp. 4622-4627
Author(s):  
Shu Wang Zhou ◽  
Ming Lei Shu ◽  
Ming Yang ◽  
Ying Long Wang

A range-based localization approach which named gravitational particle swarm optimization localization algorithm (GL) has been proposed. This algorithm considered the influence from the position of anchor nodes to the localization results, GL can directly searched out the coordinates of unknown nodes by the distance from anchor nodes to unknown nodes. As is shown in the experiment results, GL not only has high positioning accuracy, but also overcomes the defect that location error increases rapidly as the ranging error increases, compares with normal schemes (such as method of least squares, ML ) GL’s accuracy can improve 40% as the ranging error is 35%.

Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


2021 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Yujiang Li ◽  
Jinghua Cao

In order to optimize the deployment of wireless sensor network nodes, and avoid network energy consumption increase due to node redundancy and uneven coverage, the multi-objective mathematical optimization problem of area coverage is transformed into a function problem. Aiming at network coverage rate, node dormancy rate and network coverage uniformity, the idea of genetic algorithm mutation is introduced based on the discrete binary particle swarm optimization and the global optimal speed is mutated to avoid the algorithm falling into the local optimal solution. In order to further improve the optimization ability of the algorithm, the adaptive learning factor and inertia weight are introduced to obtain the optimal deployment algorithm of wireless sensor network nodes. The experimental results show that the algorithm can reduce the number of active nodes efficiently, improve coverage uniformity, reduce network energy consumption and prolong network lifetime under the premise that the coverage rate is greater than 90%, and compared with an algorithm called coverage configuration protocol, an algorithm called finding the minimum working sets in wireless sensor networks, and an algorithm called binary particle swarm optimization-g in literature, the number of active nodes in this algorithm is reduced by about 36%, 30% and 23% respectively.


2017 ◽  
Vol 13 (03) ◽  
pp. 40 ◽  
Author(s):  
Honglei Jia ◽  
Jiaxin Zheng ◽  
Gang Wang ◽  
Yulong Chen ◽  
Dongyan Huang ◽  
...  

<span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">This paper carries out in-depth and meticulous analysis of the DV-Hop localization algorithm for wireless sensor network. It improves the DV-Hop algorithm into a node localization algorithm based on one-hop range, and proposes the centroid particle swarm optimization localization algorithm based on RSSI by adding the RSSI and particle swarm optimization algorithm to the traditional centroid localization algorithm. Simulation experiment proves that the two algorithms have excellent effect.</span>


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Huanqing Cui ◽  
Yongquan Liang ◽  
Chuanai Zhou ◽  
Ning Cao

Due to uneven deployment of anchor nodes in large-scale wireless sensor networks, localization performance is seriously affected by two problems. The first is that some unknown nodes lack enough noncollinear neighbouring anchors to localize themselves accurately. The second is that some unknown nodes have many neighbouring anchors to bring great computing burden during localization. This paper proposes a localization algorithm which combined niching particle swarm optimization and reliable reference node selection in order to solve these problems. For the first problem, the proposed algorithm selects the most reliable neighbouring localized nodes as the reference in localization and using niching idea to cope with localization ambiguity problem resulting from collinear anchors. For the second problem, the algorithm utilizes three criteria to choose a minimum set of reliable neighbouring anchors to localize an unknown node. Three criteria are given to choose reliable neighbouring anchors or localized nodes when localizing an unknown node, including distance, angle, and localization precision. The proposed algorithm has been compared with some existing range-based and distributed algorithms, and the results show that the proposed algorithm achieves higher localization accuracy with less time complexity than the current PSO-based localization algorithms and performs well for wireless sensor networks with coverage holes.


Sign in / Sign up

Export Citation Format

Share Document