Integration, Application and Analysis of the SHM System for Continuous Rigid Frame Bridge

2014 ◽  
Vol 578-579 ◽  
pp. 1161-1169
Author(s):  
Li Wang ◽  
Wei Ming Yan ◽  
Hao Xiang He ◽  
Wei Wang

This paper is aiming to present the whole situation of a three spans prestressed continuous concrete rigid frame bridge’s SHM (structural health monitoring) system. Hardware structure and software exploitation of the system were respectively elaborated combining with the practical application situation, including details of sensors layout, data acquisition, storage and transform, the developing of monitoring and management system, etc. Emphasis is placed on data processing and analyzing which is collected from the bridge in the online continuously, such as modal identification of the measured acceleration responses, calculation of deflection curves in real time, observation of changing strains and stresses on the measuring points.

Author(s):  
Ying hua Li ◽  
Kesheng Peng ◽  
Junyong He ◽  
Qiangjun Shuai ◽  
Gang Zou

When the bridge components needing maintenance are the world problem at present, and the health monitoring system is considered to be a very helpful tool for solving this problem. In this paper, a large number of strain data acquired from the structural health monitoring system (SHMS) installed on a continuous rigid frame bridge are adopted to do reliability assessment. Firstly, a calculation method of punctiform time-dependent reliability is proposed based on the basic reliability theory, and introduced how to calculate reliability of the bridge by using the stress data transformed from the strain data. Secondly, combined with “Three Sigma” principle and the basic pressure safety reserve requirement, the critical load effects distribution function of the bridge is defined, and then the maintenance reliability threshold for controlling the unfavorable load state which appears in the early operation stage of this type bridge is suggested, and then the combination of bridge maintenance management and health monitoring system is realized. Finally, the transformed stress distribution certifies that the load effects of concrete bridges practically have a normal distribution; as for the concrete continuous rigid frame bridge with C50 strength grade concrete, the retrofit reliability threshold should be valued at 6.13. The methodology suggested in this article can help bridge engineers do effective maintenance of bridges, which can effectively extend the service life of the bridge and bring better economic and social benefits.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kexin Zhang ◽  
Tianyu Qi ◽  
Dachao Li ◽  
Xingwei Xue ◽  
Zhimin Zhu

PurposeThe paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.Design/methodology/approachThis paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.FindingsThe cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.Originality/valueThis paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.


2020 ◽  
Vol 12 (2) ◽  
pp. 102-118
Author(s):  
Alexandre dos Santos Gonsalves ◽  
Robson Augusto Siscoutto

The health monitoring system has become indispensable in the treatment of patients, especially for those who have chronic illnesses and need real-time observation from doctors and specialists. This article presents a low-cost wireless solution for monitoring, in real time, vital signs such as cardiac beats, breathing and blood pressure, collecting and sending data to a remote computer. During development, a wireless sensor box was created, using Arduino Nano and bluetooh sensors, where this box is attached to the patient's body, respecting the patient's flexibility and mobility during physical exercises. During the monitoring, the captured data is transmitted via the bluetooh network. The box uses a battery for its food. After the evaluation, the solution obtained a performance and correctness of the data close to 100%, being considered fit for use. Several experiments were carried out to analyze, quantify and qualify the solution, being discussed and presented in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Dansheng Wang ◽  
Junbing Zhang ◽  
Hongping Zhu

Piezoelectric lead zirconate titanate (PZT) is one of the piezoelectric smart materials, which has direct and converse piezoelectric effects and can serve as an active electromechanical impedance (EMI) sensor. The design and fabrication processes of EMI sensors embedded into concrete structures are presented briefly. Subsequently, finite element modeling and modal analysis of a continuous rigid frame bridge are implemented by using ANSYS and MIDAS and validated by the field test results. Uppermost, a health monitoring technique by employing the embedded EMI and strain sensors is proposed in this paper. The technique is not based on any physical model and is sensitive to incipient structural changes for its high frequency characteristics. A practical study on health monitoring of the continuous rigid frame bridge is implemented based on the EMI and strain signatures. In this study, some EMI and strain sensors are embedded into the box-sectional girders. The electrical admittances of distributed EMI active sensors and the strains of concrete are measured when the bridge is under construction or in operation. Based on the electrical admittance and strain measurements, the health statuses of the continuous rigid frame bridge are monitored and evaluated successfully in the construction and operation stages using a root-mean-square deviation (RMSD) index.


2021 ◽  
pp. 127571
Author(s):  
Yong Zeng ◽  
Yutong Zeng ◽  
Dong Jiang ◽  
Shanhong Liu ◽  
Hongmei Tan ◽  
...  

2014 ◽  
Vol 587-589 ◽  
pp. 1637-1641
Author(s):  
Yao Cui ◽  
We Nang Hou ◽  
Fei Ying Liu

Under the condition of the deep water reservoir area, the choice of bridge pier and long span continuous rigid frame beam construction methods are quite various. And the analysis of destruction of bridge depends mostly on the beam and piers. The paper cares mostly about these two parts.


Sign in / Sign up

Export Citation Format

Share Document