The Indirect Tensile Strength of Palm Oil Fuel Ash (POFA) Modified Asphaltic Concrete

2014 ◽  
Vol 587-589 ◽  
pp. 1270-1275 ◽  
Author(s):  
Abdulmalik Musa Maleka ◽  
Ibrahim Abubakar Alkali ◽  
Ramadhansyah Putra Jaya

The amount and nature of filler in asphaltic concrete mixes significantly affect its design and performance. The use of Palm oil fuel ash (POFA) as filler in asphaltic concrete has been studied with varying degree of success, this study therefore, evaluates the effect of POFA on the indirect tensile strength of asphaltic concrete AC 14. POFA was grained and passed through 75 μm sieve; a number of trial mixes were prepared using the Marshal Mix design procedure with 5% POFA to arrive at asphalt concrete mixtures that fulfill the Marshal criteria. The effects of POFA on stability, flow, stiffness and indirect tensile strength of asphaltic concrete (AC14) mixtures at their respective optimum binder content were evaluated. The results show that Marshall stability, flow, stiffness and indirect tensile strength values generally improved in the POFA modified mix compared with the control. POFA modified sample shows 16% improvement on the indirect tensile strength compared to the control.

2015 ◽  
Vol 744-746 ◽  
pp. 1560-1565
Author(s):  
Abdulmalik Musa Maleka ◽  
Ahmed Wsoo Hamad ◽  
Ramadhansyah Putra Jaya

The Cantabro durability test is usually used for open graded asphalt mixtures and has seen little use with dense graded mixtures. This paper presents durability data from the Cantabro test for Palm oil fuel ash (POFA) modified dense graded asphaltic concrete AC 14. The nature and amount of filler in an asphaltic concrete mixes significantly affect its design and performance. POFA is an ash obtained from the burning of waste material generated from the production of crude palm oil which is of high quantity in Malaysia. A number of trial mixes were prepared using the Marshall Mix design procedure with 5% POFA and 1% Ordinary Portland Cement (OPC) as filler materials to arrive at asphalt concrete mixtures that fulfil the Marshall criteria. Cantabro durability test was used to measure the durability of the asphaltic concrete. The results show that Marshall stability, flow, stiffness and cantabro loss values shows general improvement for the POFA modified asphalt compared to the control specimens.


2019 ◽  
Vol 222 ◽  
pp. 264-277 ◽  
Author(s):  
Zhong Sheng Tai ◽  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
Mohd Irfan Hatim Mohamed Dzahir ◽  
Khong Nee Koo ◽  
...  

Author(s):  
Zalipah Jamellodin ◽  
Hamidah Mohd Saman ◽  
Azmi Ibrahim ◽  
Suraya Hani Adnan ◽  
Nur Hafizah Abd Khalid

2014 ◽  
Vol 3 (1) ◽  
pp. 19-22
Author(s):  
Danil Tarmizi ◽  
Kartini Noor Hafni ◽  
A. Haris Simamora

This study aimed to determine the effect of palm oil fuel ash composition of the mechanical properties of polypropylene composites. Composites made by extrusion and injection molding method by mixing polypropylene and palm oil fuel ash with filler composition, respectively 10, 15, and 20 (% w/w). Mechanical properties which tested are tensile strength, elongation at break, and impact strength. The results obtained from the study is the addition of filler palm oil fuel ash in polypropylene composites decrease the mechanical properties of the composites, such as tensile strength, elongation at break, and impact strength.


Author(s):  
Mohamad Hairi Osman ◽  
◽  
Suraya Hani Adnan ◽  
Nurul Izlin Mazlin ◽  
Wan Amizah Wan Jusoh ◽  
...  

This paper investigates the stress strain behaviour of concrete containing Palm Oil Fuel Ash and Expanded Polystyrene, axial compressive strength, tensile strength and modulus of elasticity. EPS-POFA concrete was prepared by substituting fine aggregates with EPS beads and cement replaced with POFA by 10%, 20% and 30%. Results of this study showed that EPS-POFA concrete exhibited low axial compressive strength, peak strain, tensile strength and elastic modulus when the EPS and POFA contents in concrete increased. However, the decrease in axial compressive strength of concretes with containing 10 to 20% EPS and POFA are suitable amount and acceptable to be applied on building structure as per stated in America Concrete Institute 318 with minimum specified compressive strength for structural concrete is 2500 psi (17 MPa). While, the failure of EPS-POFA concrete under axial compression gradually occurred and the concretes were able to retain the load after failure without full collapse. The slope of stress-strain curve of concretes with containing EPS and POFA was lower than that of normal concrete, demonstrating that the normal concrete more brittleness that EPS-POFA concretes.


2014 ◽  
Vol 803 ◽  
pp. 110-114 ◽  
Author(s):  
Monita Olivia ◽  
Alfian Kamaldi ◽  
Iskandar R. Sitompul ◽  
Ismed Diyanto ◽  
Edy Saputra

Geopolymer is an inorganic polymer from activation of source materials that rich of silica and alumina with alkaline activator. Previous studies reveal that the geopolymer has engineering properties and durability, which is equivalent or higher than the Ordinary Portland Cement (OPC) concrete. This paper presents properties of geopolymer concrete prepared with local Palm Oil Fuel Ash (POFA) and Fly Ash (FA) from agro-industrial waste in Riau Province, Indonesia. The POFA and FA were activated by a combination of sodium hydroxide and sodium silicate. The specimens were cured at room temperature for 24 hours before steam cured for another 24 hours at 60OC. Hardened properties namely compressive strength, tensile strength, flexural strength and modulus of elasticity, and water penetration of both POFA and FA geopolymer concrete were determined at 7, 14 and 28 days. Results showed that local POFA and FA as geopolymer source materials could produce mix with strength 19-22.5 MPa at 28 days. The compressive strength, tensile strength, flexural strength and modulus of elasticity of both geopolymer tended to increase slightly with time. In general, the results suggest that the local POFA and FA are potential as source material to produce geopolymer concrete.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2021 ◽  
Vol 1136 (1) ◽  
pp. 012046
Author(s):  
Bala Gopal Adapala ◽  
Durga Chaitanya Kumar Jagarapu ◽  
Syed Hamim Jeelani ◽  
B. Sarath Chandra Kumar ◽  
Arunakanthi Eluru

Sign in / Sign up

Export Citation Format

Share Document