Effect of Shape Imperfections on Thin-Walled Pipe Bends under Out-Of-Plane Moment and Internal Pressure

2014 ◽  
Vol 592-594 ◽  
pp. 1050-1054
Author(s):  
A. Buckshumiyan ◽  
A.R. Veerappan ◽  
Subramaniam Shanmugam

This paper quantifies the effect of ovality and thinning/thickening of thin-wall pipe bend modeled using the geometric parameters of r/t=15 and 20 and λ=0.1 to 0.3. For each model the ovality and thinning is varied from 5% to 20 % in steps of 5 % .The collapse loads were obtained from twice-elastic-slope method of pipe bends subjected to out-of-plane moment with and without internal pressure. Large displacement analysis was performed on elastic-perfectly plastic material using the nonlinear FE package of ABAQUS. The analyzed shows that the thinning effect is insignificant and ovality produce the significant effect of upto 27.7% decrease in collapse load for pipe bend subjected to combined moment and internal pressure.

2000 ◽  
Vol 123 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Hashem M. Mourad ◽  
Maher Y. A. Younan

The behavior of a pipe bend, with bend factor h=0.1615(D=16 in.,R=24 in. and t=0.41 in.), subjected to out-of-plane bending and internal pressure is studied, taking geometric and material nonlinearity into account, using the finite element code ABAQUS. Material behavior is taken as elastic-perfectly plastic. The distribution of stress and strain along the axial direction and across the thickness of the bend is studied, with and without internal pressure, at the onset of yielding and at instability. Before instability is reached, through-the-thickness yielding appears at many points. The loaded end of the bend is found to be the most severely strained cross section. The circumferential distribution of stress and strain, and its variation with increased moment loading are then investigated for that section, at internal pressure values of zero and 1200 psi.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

The present paper determines collapse moments of pressurized 30°–180° pipe bends incorporated with initial geometric imperfection under out-of-plane bending moment. Extensive finite element analyses are carried out considering material as well as geometric nonlinearity. The twice-elastic-slope method is used to determine collapse moment. The results show that initial imperfection produces significant change in collapse moment for unpressurized pipe bends and pipe bends applied to higher internal pressure. The application of internal pressure produces stiffening effect to pipe bends which increases collapse moment up to a certain limit and with further increase in pressure, collapse moment decreases. The bend angle effect on collapse moment reduces with the increase in internal pressure and bend radius. Based on finite element results, collapse moment equations are formed as a function of the pipe bend geometry parameters, initial geometric imperfection, bend angle, and internal pressure for elastic-perfectly plastic material models.


1983 ◽  
Vol 18 (4) ◽  
pp. 253-260 ◽  
Author(s):  
C L Tan ◽  
K H Lee

The boundary integral equation (BIE) method for two-dimensional elastic-plastic stress analysis is applied to an internally pressurized thick-walled cylinder containing a radial crack. Two different types of material are considered, namely, an elastic-perfectly plastic material and a work-hardening material. The loading conditions applied include the case when the internal pressure also acts on the crack faces, and the case when it does not. Results are presented showing the plastic zone development in the cylinder and the variations of the fracture mechanics parameter, the J line integral, with increasing internal pressure.


2006 ◽  
Vol 129 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-deg pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic–perfectly plastic material model. The second technique is an iterative based technique which uses the same elastic–perfectly plastic material model, but incorporates large displacement effects accounting for geometric nonlinearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns, namely, in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses, namely, an elastic analysis and an elastic–plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic–plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equal to or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


Author(s):  
Anindya Bhattacharya ◽  
Sachin M. Bapat

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for the pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various D/t ratios (Where D is pipe outside diameter and t is pipe wall thickness) for internal pressure and in-plane bending moment, internal pressure and out-of-plane bending moment and internal pressure and a combination of in and out-of-plane bending moments under varying ratios. Any real life component will have imperfections and the sensitivity of the models have been investigated by incorporating imperfections as scaled eigenvectors of linear bifurcation buckling analyses. The sensitivity of the models to varying parameters of Riks analysis (an arc length based method) and use of dynamic stabilization using viscous damping forces have also been investigated. Importance of defining plastic collapse load has also been discussed. FE code ABAQUS version 6.9EF-1 has been used for the analyses.


1993 ◽  
Vol 28 (4) ◽  
pp. 277-282 ◽  
Author(s):  
D N Moreton

A thin-walled cylinder subjected to a continuous internal pressure and an alternating axial deformation is shown to exhibit ratchetting. This ratchetting manifests itself as a growth in the diameter of the cylinder and a reduction in its wall thickness. For an elastic-perfectly-plastic material the ratchetting rates are established and the boundaries of ratchetting behaviour determined. These ratchetting rates are compared with the results from a simple experiment and other available data. It is noted that the analysis is very sensitive to the yield criterion adopted.


1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Sign in / Sign up

Export Citation Format

Share Document