Evaluation of collapse moment of pressurized 30°–180° bend pipes subjected to out-of-plane bending moment

Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

The present paper determines collapse moments of pressurized 30°–180° pipe bends incorporated with initial geometric imperfection under out-of-plane bending moment. Extensive finite element analyses are carried out considering material as well as geometric nonlinearity. The twice-elastic-slope method is used to determine collapse moment. The results show that initial imperfection produces significant change in collapse moment for unpressurized pipe bends and pipe bends applied to higher internal pressure. The application of internal pressure produces stiffening effect to pipe bends which increases collapse moment up to a certain limit and with further increase in pressure, collapse moment decreases. The bend angle effect on collapse moment reduces with the increase in internal pressure and bend radius. Based on finite element results, collapse moment equations are formed as a function of the pipe bend geometry parameters, initial geometric imperfection, bend angle, and internal pressure for elastic-perfectly plastic material models.

Author(s):  
Anindya Bhattacharya ◽  
Sachin Bapat ◽  
Hardik Patel ◽  
Shailan Patel ◽  
Michael P. Cross

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various bend parameters (bend parameter = tRbrm2) under internal pressure and out-of-plane bending moment for various bend angles using both small and large deformation theories. FE code ABAQUS version 6.9EF-1 has been used for the analyses. The goal of the paper is to develop an expression for plastic collapse moment for a bend using plastic work curvature method when the bend is subjected to out-of-plane bending moment and internal pressure as a function of bend angle and bend parameter.


Author(s):  
Hany F. Abdalla

Ninety degree back–to–back pipe bends are extensively utilized within piping networks of modern nuclear submarines and modern turbofan aero–engines where space limitation is considered a supreme concern. According the author’s knowledge, no shakedown analysis exists for such structure based on experimental data. In the current research, the pipe bend setup analyzed is subjected to a spectrum of steady internal pressures and cyclic out–of–plane bending moments. A previously developed direct non–cyclic simplified technique, for determining elastic shakedown limit loads, is utilized to generate the elastic shakedown boundary of the analyzed structure. Comparison with the elastic shakedown boundary of the same structure, but subjected to cyclic in–plane bending moments revealed a higher shakedown boundary for the out–of–plane bending loading configuration with a maximum bending moment ratio of 1.4 within the low steady internal pressure spectrum. The ratio decreases towards the medium to high internal pressure spectrum. The simplified technique outcomes showed excellent correlation with the results of full elastic–plastic cyclic loading finite element simulations.


2006 ◽  
Vol 306-308 ◽  
pp. 351-356 ◽  
Author(s):  
Asnawi Lubis ◽  
Jamiatul Akmal

The behavior of piping elbows under bending and internal pressure is more complicated than expected. The main problem is that the coupling of bending and internal pressure is nonlinear; the resulting stress and displacement cannot be added according to the principle of superposition. In addition, internal pressure tends to act against the effect caused by the bending moment. If bending moment ovalise the elbow cross-section, with internal pressure acting against this deformation, then the ovalised cross section deform back to the original circular shape. It is then introduced the term “pressure reduction effect”, or in some literature, “pressure stiffening effect”. Current design piping code treats the pressure reduction effect equally for in-plane (closing and opening) moment and outof- plane moment. The aim of this paper is to present results of a detailed finite element analysis on the non-linear behavior of piping elbows of various geometric configurations subject to out-of-plane bending and internal pressure. Specifically the standard Rodabaugh & George nonlinear pressure reduction equations for in-plane closing moment are checked in a systematic study for out-of-plane moment against nonlinear finite element analysis. The results show that the pressure stiffening effects are markedly different for in-plane and out-of-plane bending.


Author(s):  
Anindya Bhattacharya ◽  
Sachin M. Bapat

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for the pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various D/t ratios (Where D is pipe outside diameter and t is pipe wall thickness) for internal pressure and in-plane bending moment, internal pressure and out-of-plane bending moment and internal pressure and a combination of in and out-of-plane bending moments under varying ratios. Any real life component will have imperfections and the sensitivity of the models have been investigated by incorporating imperfections as scaled eigenvectors of linear bifurcation buckling analyses. The sensitivity of the models to varying parameters of Riks analysis (an arc length based method) and use of dynamic stabilization using viscous damping forces have also been investigated. Importance of defining plastic collapse load has also been discussed. FE code ABAQUS version 6.9EF-1 has been used for the analyses.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Silambarasan R. ◽  
Veerappan A.R. ◽  
Shanmugam S.

Purpose The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics. Design/methodology/approach ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°. Findings The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases. Originality/value The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


Author(s):  
Diana Abdulhameed ◽  
Michael Martens ◽  
J. J. Roger Cheng ◽  
Samer Adeeb

Pipe bends are frequently used to change the direction in pipeline systems and they are considered one of the critical components as well. Bending moments acting on the pipe bends result from the surrounding environment, such as thermal expansions, soil deformations, and external loads. As a result of these bending moments, the initially circular cross-section of the pipe bend deforms into an oval shape. This consequently changes the pipe bend’s flexibility leading to higher stresses compared to straight pipes. Past studies considered the case of a closing in-plane bending moment on 90-degree pipe bends and proposed factors that account for the increased flexibility and high-stress levels. These factors are currently presented in the design codes and known as the flexibility and stress intensification factors (SIF). This paper covers the behaviour of an initially circular cross-sectional smooth pipe bend of uniform thickness subjected to in-plane opening/closing bending moment. ABAQUS FEA software is used in this study to model pipe bends with different nominal pipe sizes, bend angles, and various bend radius to cross-sectional pipe radius ratios. A comparison between the CSA-Z662 code and the FEA results is conducted to investigate the applicability of the currently used SIF factor presented in the design code for different loading cases. The study showed that the in-plane bending moment direction acting on the pipe has a significant effect on the stress distribution and the flexibility of the pipe bend. The variation of bend angle and bend radius showed that it affects the maximum stress drastically and should be considered as a parameter in the flexibility and SIF factors. Moreover, the CSA results are found to be un-conservative in some cases depending on the bend angle and direction of the applied bending moment.


Author(s):  
Anindya Bhattacharya ◽  
Sachin Bapat ◽  
Hardik Patel ◽  
Shailan Patel

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for the pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various bend parameters (bend parameter = tRbrm2) under internal pressure and in-plane bending moment for various bend angles using both small and large deformation theories. FE code ABAQUS version 6.9EF-1 has been used for the analyses.


Sign in / Sign up

Export Citation Format

Share Document