Acoustic-Emission Wave Response to a Dislocation Source in Layered Media

2014 ◽  
Vol 598 ◽  
pp. 135-140
Author(s):  
Rui Chong Zhang

This paper presents synthesis of acoustic-emission (AE) wave propagation in multi-layer materials and simulation of AE wave responses at free surface. In particular, the AE source is modelled as an arbitrary-orientation dislocation over an inclined-to-surface fault within one layer or at the layer-to-layer interface, while the materials are assumed as multi-layer media, each of which is homogeneous, isotropic and linearly elastic. With the use of the integral transformation approach, the three-dimensional wave propagation in the materials is solved in transformed or frequency-wavenumber domain. Subsequently, a closed-form solution for wave responses at free surface is found, which can then be converted in time-space domain. Numerical examples are finally provided for illustration.

2013 ◽  
Vol 321-324 ◽  
pp. 1321-1330
Author(s):  
Rui Chong Zhang ◽  
Alhamid Alamin

This paper presents synthesis of acoustic-emission (AE) wave propagation in multi-layer materials and simulation of AE wave responses at free surface. In particular, the AE source is modelled as an arbitrary-orientation dislocation over an inclined-to-surface fault within one layer or at the layer-to-layer interface, while the materials are assumed as multi-layer media, each of which is homogeneous, isotropic and linearly elastic. With the use of the integral transformation approach, the three-dimensional wave propagation in the materials is solved in transformed or frequency-wavenumber domain. Subsequently, a closed-form solution for wave responses at free surface is found, which can then be converted in time-space domain. Numerical examples are finally provided for illustration.


2014 ◽  
Vol 44 (1) ◽  
pp. 21-44 ◽  
Author(s):  
A. Alamin ◽  
R. Zhang

Abstract This study proposes a model of wave propagation in layered media for the use in acoustic emission (AE) studies. This model aims to find an AE response at a free surface to the propagating waves originating at a dislocation source either in one layer medium or a layer-to-layer interface. Each of the layered media is assumed to be homogenous, linear elastic and isotropic. An integral transformation method has been applied to determine the wave response in frequency-wave number domain, which is then converted to time-space domain. In the numerical examples, we first select truncated values with the finite integral transformation, so that no wave interference happens in the responses from wave reflection at truncated boundaries. Next, we simulate wave propagation in an elastic half space, and compare results obtained with that from other kind bottom boundary. Next, we introduce a dis- location source in interface and compare a simulated AE wave response obtained with that computed in the layered medium to demonstrate the performance of the model. In each simulation, the results show good agreement with the reference solutions.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


1995 ◽  
Vol 80 (2) ◽  
pp. 424-426
Author(s):  
Frank O'Brien ◽  
Sherry E. Hammel ◽  
Chung T. Nguyen

The authors' Poisson probability method for detecting stochastic randomness in three-dimensional space involved the need to evaluate an integral for which no appropriate closed-form solution could be located in standard handbooks. This resulted in a formula specifically calculated to solve this integral in closed form. In this paper the calculation is verified by the method of mathematical induction.


2005 ◽  
Vol 4 (2) ◽  
pp. 197
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


2019 ◽  
Vol 484 (6) ◽  
pp. 672-677
Author(s):  
A. V. Vokhmintcev ◽  
A. V. Melnikov ◽  
K. V. Mironov ◽  
V. V. Burlutskiy

A closed-form solution is proposed for the problem of minimizing a functional consisting of two terms measuring mean-square distances for visually associated characteristic points on an image and meansquare distances for point clouds in terms of a point-to-plane metric. An accurate method for reconstructing three-dimensional dynamic environment is presented, and the properties of closed-form solutions are described. The proposed approach improves the accuracy and convergence of reconstruction methods for complex and large-scale scenes.


Sign in / Sign up

Export Citation Format

Share Document