A Modified Harmony Search Algorithm Solve Numerical Optimization Problems

2014 ◽  
Vol 602-605 ◽  
pp. 3589-3592
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

This paper proposes a new effective MHS algorithm to solve numerical optimization problems. The MHS algorithm first adopt a novel self-studying strategy, which makes it easy balance the global search ability and local development ability, prevent the MHS algorithm trapped into local optimal value. besides, the harmony memory consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth distance (bw) is changed with function values dynamically, it can effectively improve the convergence speed and precision of the algorithm Based on five test functions , experiments results obtained by the MHS algorithm are better than those obtained using HS, IHS and NGHS algorithm in the literature.

2014 ◽  
Vol 644-650 ◽  
pp. 2169-2172
Author(s):  
Zhi Kong ◽  
Guo Dong Zhang ◽  
Li Fu Wang

This paper develops an improved novel global harmony search (INGHS) algorithm for solving optimization problems. INGHS employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of novel global harmony search (NGHS) algorithm. Simulations for five benchmark test functions show that INGHS possesses better ability to find the global optimum than that of harmony search (HS) algorithm. Compared with NGHS and HS, INGHS is better in terms of robustness and efficiency.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3438-3441
Author(s):  
Guo Jun Li

Harmony search (HS) algorithm is a new population based algorithm, which imitates the phenomenon of musical improvisation process. Its own potential and shortage, one shortage is that it easily trapped into local optima. In this paper, a hybrid harmony search algorithm (HHS) is proposed based on the conception of swarm intelligence. HHS employed a local search method to replace the pitch adjusting operation, and designed an elitist preservation strategy to modify the selection operation. Experiment results demonstrated that the proposed method performs much better than the HS and its improved algorithms (IHS, GHS and NGHS).


2014 ◽  
Vol 587-589 ◽  
pp. 2295-2298
Author(s):  
Ping Zhang ◽  
Mei Ling Li ◽  
Qian Han ◽  
Yi Ning Zhang ◽  
Guo Jun Li

To intend to improve the optimization performance of harmony search (HS) algorithm, an improved global harmony search (IGHS) algorithm was presented in this paper. In this algorithm, inspired by swarm intelligence, the global best harmony are borrowed to enhance the optimization accuracy of HS; and mutation and crossover operation instead of pitch adjustment operation to improved the algorithm convergence rate. The key parameters are adjusted to balance the local and global search. Several benchmark experiment simulations, the IGHS has demonstrated stronger convergence and stability than original harmony search (HS) algorithm and its other three improved algorithms (IHS, GHS and SGHS) that reported in recent literature.


2014 ◽  
Vol 989-994 ◽  
pp. 2532-2535
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

This paper presents a modified harmony search (MHS) algorithm for solving numerical optimization problems. MHS employs a novel self-learning strategy for generating new solution vectors that enhances accuracy and convergence rate of harmony search (HS) algorithm. In the proposed MHS algorithm, the harmony memory consideration rate (HMCR) is dynamically adapted to the changing of objective function value in the current harmony memory. The other two key parameters PAR and bw adjust dynamically with generation number. Based on a large number of experiments, MHS has demonstrated stronger convergence and stability than original harmony search (HS) algorithm and its two improved algorithms (IHS and GHS).


2021 ◽  
Vol 11 (19) ◽  
pp. 8931
Author(s):  
Daniel Molina-Pérez ◽  
Edgar Alfredo Portilla-Flores ◽  
Eduardo Vega-Alvarado ◽  
Maria Bárbara Calva-Yañez ◽  
Gabriel Sepúlveda-Cervantes

In this work, a new version of the Harmony Search algorithm for solving multi-objective optimization problems is proposed, MOHSg, with pitch adjustment using genotype. The main contribution consists of adjusting the pitch using the crowding distance by genotype; that is, the distancing in the search space. This adjustment automatically regulates the exploration–exploitation balance of the algorithm, based on the distribution of the harmonies in the search space during the formation of Pareto fronts. Therefore, MOHSg only requires the presetting of the harmony memory accepting rate and pitch adjustment rate for its operation, avoiding the use of a static bandwidth or dynamic parameters. MOHSg was tested through the execution of diverse test functions, and it was able to produce results similar or better than those generated by algorithms that constitute search variants of harmonies, representative of the state-of-the-art in multi-objective optimization with HS.


2014 ◽  
Vol 989-994 ◽  
pp. 2528-2531
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search algorithm is a new meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments’ pitches searching for a perfect state of harmony. To enable the harmony search algorithm to transcend its limited capability of local optimum, a modified harmony search algorithm is proposed in this paper. In the modified harmony search algorithm, the mutation operation of differential evolution algorithm is introduced into MHS algorithm, which improves its convergence. Several standard benchmark optimization functions are to be test and compare the performance of the MHS. The results revealed the superiority of the proposed method to the HS and recently developed variants.


2020 ◽  
Vol 30 (1) ◽  
pp. 1-17
Author(s):  
Iyad Abu Doush ◽  
Eugene Santos

Abstract Harmony Search Algorithm (HSA) is an evolutionary algorithm which mimics the process of music improvisation to obtain a nice harmony. The algorithm has been successfully applied to solve optimization problems in different domains. A significant shortcoming of the algorithm is inadequate exploitation when trying to solve complex problems. The algorithm relies on three operators for performing improvisation: memory consideration, pitch adjustment, and random consideration. In order to improve algorithm efficiency, we use roulette wheel and tournament selection in memory consideration, replace the pitch adjustment and random consideration with a modified polynomial mutation, and enhance the obtained new harmony with a modified β-hill climbing algorithm. Such modification can help to maintain the diversity and enhance the convergence speed of the modified HS algorithm. β-hill climbing is a recently introduced local search algorithm that is able to effectively solve different optimization problems. β-hill climbing is utilized in the modified HS algorithm as a local search technique to improve the generated solution by HS. Two algorithms are proposed: the first one is called PHSβ–HC and the second one is called Imp. PHSβ–HC. The two algorithms are evaluated using 13 global optimization classical benchmark function with various ranges and complexities. The proposed algorithms are compared against five other HSA using the same test functions. Using Friedman test, the two proposed algorithms ranked 2nd (Imp. PHSβ–HC) and 3rd (PHSβ–HC). Furthermore, the two proposed algorithms are compared against four versions of particle swarm optimization (PSO). The results show that the proposed PHSβ–HC algorithm generates the best results for three test functions. In addition, the proposed Imp. PHSβ–HC algorithm is able to overcome the other algorithms for two test functions. Finally, the two proposed algorithms are compared with four variations of differential evolution (DE). The proposed PHSβ–HC algorithm produces the best results for three test functions, and the proposed Imp. PHSβ–HC algorithm outperforms the other algorithms for two test functions. In a nutshell, the two modified HSA are considered as an efficient extension to HSA which can be used to solve several optimization applications in the future.


2013 ◽  
Vol 4 (3) ◽  
pp. 1-14 ◽  
Author(s):  
Iyad Abu Doush ◽  
Faisal Alkhateeb ◽  
Eslam Al Maghayreh ◽  
Mohammed Azmi Al-Betar ◽  
Basima Hani F. Hasan

Harmony search algorithm (HSA) is a recent evolutionary algorithm used to solve several optimization problems. The algorithm mimics the improvisation behaviour of a group of musicians to find a good harmony. Several variations of HSA have been proposed to enhance its performance. In this paper, a new variation of HSA that uses multi-parent crossover is proposed (HSA-MPC). In this technique three harmonies are used to generate three new harmonies that will replace the worst three solution vectors in the harmony memory (HM). The algorithm has been applied to solve a set of eight real world numerical optimization problems (1-8) introduced for IEEE-CEC2011 evolutionary algorithm competition. The experimental results of the proposed algorithm are compared with the original HSA, and two variations of HSA: global best HSA and tournament HSA. The HSA-MPC almost always shows superiority on all test problems.


Sign in / Sign up

Export Citation Format

Share Document