Warp Tension Control System Based on IMC

2014 ◽  
Vol 635-637 ◽  
pp. 1294-1298
Author(s):  
Zhen Pan ◽  
Peng Luo ◽  
Zhen Yu Wu

To ensure stability of warp tension during weaving process, the paper presented a warp tension control system which uses two permanent magnet synchronous motor (PMSM) drive let-off and take-up mechanism respectively. Based on analyzing factors influencing warp tension, a warp tension mathematical model was established. The paper proposed a tension adjustment arithmetic based on internal model control (IMC) method. The method has only one adjustable parameter which decides performance of the system. The simulation results show that the warp tension control system based on IMC has a fine effect on tension stability of warp and it is significantly superior to conventional PID control in terms of robustness and immunity.

2021 ◽  
pp. 004051752110536
Author(s):  
Yanjun Xiao ◽  
Zhenpeng Zhang ◽  
Zhenhao Liu ◽  
Weiling Liu ◽  
Nan Gao ◽  
...  

Traditional proportional–integral–derivative (PID) control performance optimization is an essential method to improve a loom’s warp tension control performance. This work proposes an improved genetic algorithm optimized PID control scheme to overcome the decline in control performance of the traditional PID control algorithm in a loom’s warp tension control system. Through the decoupling analysis of loom motion mechanism, the establishment of warp tension model and the optimization of fitness evaluation mechanism of genetic algorithm can effectively overcome the problems of local optimal solution and algorithm degradation of genetic algorithm. Simulation experiments were carried out with the traditional PID, the integral separation PID, and the genetic PID in warp tension control. The results show the advantage of the genetic-PID algorithm to control warp tension stability. Ultimately, according to the functional characteristics of the loom mechanism, a tension control platform for experimental studies was established. The test results show that the maximum fluctuation range of warp tension is within [−2, +6] at the test speed of 850 rpm, which meets the requirements of long-term stable and reliable control of warp tension under different weaving conditions.


2009 ◽  
Vol 16-19 ◽  
pp. 93-99
Author(s):  
Li Yong Hu ◽  
A Liang Chen

A rotary MRF (magnetorheological fluids) damper is introduced in tension control systems. An experimental tension control system is designed by using the MRF damper as tension control actuator. Control strategies of the tension control system are studied. A fuzzy-PID feedback controller for the tension control system is constructed and tested, where the variable parameters of the PID were modified by using the fuzzy inference rules. Experimental results indicate that the fuzzy-PID control strategy can be used in the tension control system to get better performance than the conventional PID control strategy.


Author(s):  
Nguyen Van Vi Quoc ◽  
Duong Hoai Nghia

Dynamic Positioning Ship System (DP) is an automated system, which is used to keep the ship maintain its position and heading at a fixed location or navigate along a predetermined track exclusively by mean of its own actives propulsions systems without using such fixing device as the anchor. DP system’s task is to control the ship moving at a fixed position or moves following the route for previous with low speed to execute a task. This paper presents a novel stability robustness controller for a dynamic positioning ship with uncertainties and unknown external disturbances. For the development and testing of the controller we present shematic diagram of DP systems, the mathematical modeling of the ship and the bias forces as slowly-varying environmental disturbances. The proposed controller has two loops. The inner loop uses an internal model control (IMC) technique to control the speed of the ship. The outer loop uses a propotional (P) control ler to control the position of the ship. The stability robustness of the control system is analysed. One of the key aspects of the prposed controller is that the robustness of the closed loop system can tuned via a single tuning parameter. The simulation results demonstrate that the proposed control system has high performance and robustness in the present of environment disturbance and uncertainty. The proposed control system was compared with PID control.The control algorithm of ship dynamic positioning is generally based on the classic PID, PID control has many advantages and has a strong robustness. However, the parameters of the PID control depend on the test will cost a lot of time and energy. Simulation results are provided to illustrate the effectiveness of the proposed controller. The problem of guidance and control of thruster actuators is out of scope of the paper.


2013 ◽  
Vol 321-324 ◽  
pp. 1748-1752
Author(s):  
Hai Xia Zhao ◽  
De Gong Chang

When winding yarn, the yarn tension control of a winding machine affects the quality of yarn subsequent processing. For randomicity and instability of the yarn tension in a winding machine, the paper designed a yarn tension control system based on analyzing conventional PID controller, using the fuzzy PID control algorithm to control the yarn tension system and realizing on-line self-adjustment of PID control parameters. The simulation experiment showed that system tension had better response using fuzzy PID control and eliminated nonlinearity and uncertainty of the system.


Sign in / Sign up

Export Citation Format

Share Document