Application of Fuzzy PID Control in Yarn Tension Control System

2013 ◽  
Vol 321-324 ◽  
pp. 1748-1752
Author(s):  
Hai Xia Zhao ◽  
De Gong Chang

When winding yarn, the yarn tension control of a winding machine affects the quality of yarn subsequent processing. For randomicity and instability of the yarn tension in a winding machine, the paper designed a yarn tension control system based on analyzing conventional PID controller, using the fuzzy PID control algorithm to control the yarn tension system and realizing on-line self-adjustment of PID control parameters. The simulation experiment showed that system tension had better response using fuzzy PID control and eliminated nonlinearity and uncertainty of the system.

2009 ◽  
Vol 16-19 ◽  
pp. 93-99
Author(s):  
Li Yong Hu ◽  
A Liang Chen

A rotary MRF (magnetorheological fluids) damper is introduced in tension control systems. An experimental tension control system is designed by using the MRF damper as tension control actuator. Control strategies of the tension control system are studied. A fuzzy-PID feedback controller for the tension control system is constructed and tested, where the variable parameters of the PID were modified by using the fuzzy inference rules. Experimental results indicate that the fuzzy-PID control strategy can be used in the tension control system to get better performance than the conventional PID control strategy.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6512
Author(s):  
Liwei Deng ◽  
Hongfei Suo ◽  
Haonan Ren

With the rapid development of science and technology as well as the comprehensive societal progress, the demand for electricity in all walks of life is also increasing. As is known to all, the mechanical structure and tension control of a transformer winding machine is the key to improving the quality of coil winding, due to coil winding being generally considered the core technology of transformer manufacturing. Aiming at the synchronous winding control problem of the conductor and insulating layer of the transformer winding machine, this paper presents a mechanical structure and tension control scheme of a new type of transformer winding machine. Based on the dynamic analysis and modeling of the mechanical structure of the winding machine, the speed control of the main speed roller by the fuzzy PID control rate is implemented initially. Combined with the actual demand of the project, the feasibility and effectiveness of the control target with different tension are verified by the simulation experiment and further compared with the traditional PID control method. The simulation results show that the proposed fuzzy PID control rate can realize the automatic and efficient winding of the transformer winding machine, showing that it is superior to the traditional PID control rate in overcoming the disturbance and controlling effect.


2013 ◽  
Vol 655-657 ◽  
pp. 1505-1509
Author(s):  
Gang Yuan Mao ◽  
Mei Wu ◽  
Hui Kang Liu

Tension control system is one of the widely used systems in modern industrial control systems. In tension control system PID parameter setting is one of the main problems affecting the control system performance. However, conventional PID parameter is difficult to set. This article describes a PID fuzzy controller based on adaptive learning, which can change according to the deviation and deviation rate to adjust parameters in real time. Practice shows that such self-learning fuzzy PID controller has better control performance than conventional PID controller in tension control.


2021 ◽  
Vol 7 (1) ◽  
pp. 288-295
Author(s):  
G. Zhao ◽  
N. Chen ◽  
A. Levtsev

The quality of the control system depends on various factors such as the characteristics of the controlled object, the control scheme, the form and size of interference, etc. In a control system where the characteristics of the object and the hardware and software have been basically determined, the control quality of the system depends on the control algorithm. The control algorithm will make the motion process control have better speed, accuracy and stability. The study of control law is an important part of the control system design of the entire six-degree-of-freedom test bench. The characteristics of the controlled object and the existence of interference in this control system require the designed control law to have the characteristics of strong robustness, certain intelligence, and easy implementation, so as to achieve stable and precise control of the system and achieve the control indicators required by the system. The control strategy of this six-degree-of-freedom test bench adopts Fuzzy PID control, which combines fuzzy theory with the mature traditional PID control theory and uses fuzzy theory to tune the three control parameters of PID to form a parameter self-tuning Fuzzy PID control Device. The Fuzzy PID control strategy is simulated by MATLAB simulation software.


2012 ◽  
Vol 466-467 ◽  
pp. 47-51 ◽  
Author(s):  
Jing Liu

The process of PVC polymerization is nonlinear and time-delayed. It is very difficult to establish an exact mathematical model. Based on the analysis of the conventional PID controller’s limitation, the fuzzy PID control system of PVC polymerization is introduced. A new kind of fuzzy PID controller is designed and the three parameters of PID can be self-tuned on-line. The simulation result proves that fuzzy PID controller is better than common PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


Sign in / Sign up

Export Citation Format

Share Document