Double internal model control for permanent magnet synchronous motor vector control system

Author(s):  
Haowen Li ◽  
Zhao Meng ◽  
Gang Zheng ◽  
Haijing Wu
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 172 ◽  
Author(s):  
Zhihong Wu ◽  
Weisong Gu ◽  
Yuan Zhu ◽  
Ke Lu

Via the vector space decomposition (VSD) transformation, the currents in an asymmetric six-phase permanent magnet synchronous motor (ASP_PMSM) can be decoupled into three orthogonal subspaces. Control of α–β currents in α–β subspace is important for torque regulation, while control of x-y currents in x-y subspace can suppress the harmonics due to the dead time of converters and other nonlinear factors. The zero-sequence components in O1-O2 subspace are 0 due to isolated neutral points. In α–β subspace, a state observer is constructed by introducing the error variable between the real current and the internal model current based on the internal model control method, which can improve the current control performance compared to the traditional internal model control method. In x–y subspace, in order to suppress the current harmonics, an adaptive-linear-neuron (ADALINE)-based control algorithm is employed to generate the compensation voltage, which is self-tuned by minimizing the estimated current distortion through the least mean square (LMS) algorithm. The modulation technique to implement the four-dimensional current control based on the three-phase SVPWM is given. The experimental results validate the robustness and effectiveness of the proposed control method.


2018 ◽  
Vol 232 ◽  
pp. 04029
Author(s):  
Hu-cheng He ◽  
Wen-ting Wang ◽  
Qun Zhu ◽  
Lei Shi

As a high-performance variable frequency control technology, vector control has been widely used in the field of AC speed regulation. However, the cross-coupling potential of the induction motor after the vector transformation still affects the system performance. Therefore, the method is studied in which stator current is decoupled to excitation component and torque component using internal model control, and the internal model decoupling stator current controller is designed based on rotor field orientation. The simulation model of induction motor vector control system based on internal model decoupling is constructed with Matlab/Simulink. The simulation result shows that the internal model controller is superior to the traditional PI controller in disturbance-rejection performance and robustness.


Sign in / Sign up

Export Citation Format

Share Document