The Optimization Analysis of Hydraulic Junction Location of Three-Sources Branched Heat-Supply Network

2014 ◽  
Vol 638-640 ◽  
pp. 2101-2105
Author(s):  
Lin Hua Zhang ◽  
Dong Yang ◽  
Ting Ting Chen ◽  
Shou Jun Zhou ◽  
Ling Liu

In this paper, we shall first briefly introduce the hydraulic junction of three-sources branched heat-supply network and the related optimization method. It's difficult to guarantee that the system runs in optimal state and it increases energy consumption in the system. In view of this situation this paper proposes a method to find the optimal positions of hydraulic intersections based on analyzing a real heating system with three heat sources in Jining. The optimization objective is to minimize the electric power consumption of circulating water pumps in district heating system. Finally, optimization programs are designed and the optimized results verify the feasibility and validity of the method compared with conventional experience values.

Author(s):  
Tetiana Zheliuk

Introduction. One of the main directions of ensuring the sustainable development of the national economy and its regions is the reform of the energy sector, which can take place through the modernization or innovation of its components. An important component of these reforms is to provide the population with the environmentally friendly and socially safe thermal energy. At the present stage of management, the heat supply is the most costly branch of public utilities, which is supplemented by the problems of the inefficient fuel balance structure; worn-out infrastructure and low energy efficiency. This highlights the need to study the management of modernization of the heat supply system in the region in view of the declared vectors of the long-term development. Object of research is the process of managing the modernization of the heat supply system in the region. Subject of the research is a set of scientific approaches and practical mechanisms of modernization of the heat supply system of the region in the context of ensuring its sustainable development. Objective. The conceptual foundations of modernization of the heat supply system of the region in the context of its sustainable development through the introduction of the innovative technologies both in the management process and in the energy sector itself is substantiated in the paper. Methods. The following general scientific methods were used during the research process: system, structural analysis, grouping, when studying the structural elements and isolation of problems of development of the heat supply system of the region; historical analysis, when considering the scientific principles and institutional mechanism of modernization of the region’s heat supply system; comparative analysis in assessing the possibilities of the green transition of the heat supply system of the region and also when considering the features of the use of grant resources in the modernization of the heat supply system of the region; economic analysis in assessing the current state of the district heating system, etc. results. The essential determinants of the heat supply system of the region are analyzed, the objective need, organizational and economic mechanisms for managing the modernization of the heat supply, taking into account the need for the balanced development of the energy sector of the region are verified. The scientific novelty of the obtained results lies in the substantiation of the conceptual approaches to the management of modernization of the heat supply system of the region by innovating the forms and methods of managerial influence on the heat supply system of the region. The conclusion is made about the following effective approaches in managing the modernization of the district heating system: planning of the sustainable development of the energy sector, development of programs for modernization of the district heating, implementation of the infrastructure and soft projects, implementation of the international projects, motivation of households and entrepreneurship in the heat sector, participation in the grant requests, in state crediting programs, realization of the business projects in the field of production of environmentally friendly fuel; conducting an information campaign among the population and other key market players to raise the awareness of the energy efficiency financing mechanisms. The practical significance of the obtained results is that the developed recommendations will be used to improve the organizational and economic mechanism of management of the district heating system modernization and ensure its sustainable development.


2019 ◽  
Vol 135 ◽  
pp. 01031
Author(s):  
Mereke Agilbayeva ◽  
Alexey Kalinin

The district heating system of Karaganda (Kazakhstan) is considered in the article. The characteristics of the existing cogenerators and the state of the pipeline networks are given. Given the analysis of the existing state of the entire district heating of Karaganda. Proposed the program for the integrated development of the heat supply system bringing world experience in implementing the main development and modernization of heating networks. Shown the experience of reconstruction of heat supply facilities in the city of Karaganda within the framework of the state loan program “Nurly Zhol”. Based on the statistical data on the development of the city of Karaganda and its heat supply system the predicted heat loads are given until 2030. Due to the shortage of available heat capacity, options for the development of a centralized heat supply system in Karaganda are given and analyzed.


2020 ◽  
Vol 29 (5) ◽  
pp. 1206-1222
Author(s):  
Tong Xu ◽  
Jing Yan ◽  
Xinlei Wang ◽  
Hai Wang ◽  
Tong Zhu ◽  
...  

2015 ◽  
Vol 35 (1) ◽  
pp. 15-22
Author(s):  
Bożena Babiarz

Abstract The article presents the reliability analysis of subsystem of heat supply in the example of 47 thousand inhabitants’ city. The analysis was made on the basis of operational data made available by the Municipal Heating Company, between the years 2001 ÷ 2012. To describe the quantitative reliability of heat supply subsystem reliability indicators are used. Main times between failure and unitary failure rates including the month of their occurrence, type and diameter of the heating network, thermal power region were working out. Knowing the characteristics of the time to repair for the heating network, the reliability of heat supply subsystem for different thermal power region, considering the district heating system configuration can be determined.


2014 ◽  
Vol 535 ◽  
pp. 309-314
Author(s):  
Dian Zheng Fu ◽  
Guo He Huang

In this study, fuel supply optimization model coupled with environmental emission standard and heat demond prediction was applied in the district heating system of a new economic district in the middle part of Liaoning Province. The model results indicate that the coals from different sources and the use of nature gas are influenced while the component ratio of each coal type in coal bending is not influenced by the thermalization coefficient. Moreover, the results also shows that the thermalization coefficient can be regulated by the decision maker of the district heating system, resulting in redistributing the heat supplies between the main heat supply source and peak-shaving heat supply source in order to further obtain the reasonable heating alternative, which has both the economic and environmental merits for the residential users.


Energy ◽  
2019 ◽  
Vol 167 ◽  
pp. 80-91 ◽  
Author(s):  
A. Moallemi ◽  
A. Arabkoohsar ◽  
F.J.P. Pujatti ◽  
R.M. Valle ◽  
K.A.R. Ismail

2021 ◽  
Vol 43 (3) ◽  
pp. 36-43
Author(s):  
A. Sigal ◽  
D. Paderno ◽  
N.A. Nizhnik

The analysis of the district heating system of the city of Kyiv and its main operational indicators is presented. The main problems that need to be solved in the development of a new District Heating Scheme are described. The basic conceptual directions and technical decisions concerning development of system of heat supply of the city for the settlement period are resulted. As part of the development of the Heat Supply Scheme of Kyiv for the period up to 2030, a powerful heat source in the city center will be gradually converted to hydrogen fuel obtained from "green" energy by electrolysis (until the needs of ST-1 are fully met after 2030).


Sign in / Sign up

Export Citation Format

Share Document