Path Planning of Mobile Robot Based on Improved Artificial Potential Field Method

2014 ◽  
Vol 644-650 ◽  
pp. 154-157 ◽  
Author(s):  
Su Ying Zhang ◽  
Yan Kai Shen ◽  
Wen Shuai Cui

The artificial potential field method has been extensively used in mobile robot path planning for its characteristics of simpleness, high efficiency, and smooth path. In this paper, to solve the problem of local minima in traditional artificial potential field method, A modified form of repulsion function is proposed. A detour force is added to the repulsion function, the problem of local minima can be solved effectively. In the end, with the help of Matlab software simulating, the result shows that this method is simple and effective.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianying Xu ◽  
Haibo Zhou ◽  
Shuaixia Tan ◽  
Zhiqiang Li ◽  
Xia Ju ◽  
...  

Purpose This paper aims to resolve issues of the traditional artificial potential field method, such as falling into local minima, low success rate and lack of ability to sense the obstacle shapes in the planning process. Design/methodology/approach In this paper, an improved artificial potential field method is proposed, where the object can leave the local minima point, where the algorithm falls into, while it avoids the obstacle, following a shorter feasible path along the repulsive equipotential surface, which is locally optimized. The whole obstacle avoidance process is based on the improved artificial potential field method, applied during the mechanical arm path planning action, along the motion from the starting point to the target point. Findings Simulation results show that the algorithm in this paper can effectively perceive the obstacle shape in all the selected cases and can effectively shorten the distance of the planned path by 13%–41% with significantly higher planning efficiency compared with the improved artificial potential field method based on rapidly-exploring random tree. The experimental results show that the improved artificial potential field method can effectively plan a smooth collision-free path for the object, based on an algorithm with good environmental adaptability. Originality/value An improved artificial potential field method is proposed for optimized obstacle avoidance path planning of a mechanical arm in three-dimensional space. This new approach aims to resolve issues of the traditional artificial potential field method, such as falling into local minima, low success rate and lack of ability to sense the obstacle shapes in the planning process.


2015 ◽  
Vol 15 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Wenbai Chen ◽  
Xibao Wu ◽  
Yang Lu

Abstract To solve the problem of local minima and unreachable destination of the traditional artificial potential field method in mobile robot path planning, chaos optimization is introduced to improve the artificial potential field method. The potential field function was adopted as a target function of chaos optimization, and a kind of “two-stage” chaos optimization was used. The corresponding movement step and direction of the robot were achieved by chaos search. Comparison of the improved method proposed in this paper and the traditional artificial potential field method is performed by simulation. The simulation results show that the improved method gets rid of the drawbacks, such as local minima and unreachable goal. Furthermore, the improved method is also verified by building up a physical platform based on “Future Star” robot. The success of the physical experiment indicates that the improved algorithm is feasible and efficient for mobile robot path planning.


2015 ◽  
Vol 11 (1) ◽  
pp. 32-41
Author(s):  
Alaa Ahmed ◽  
Turki Abdalla ◽  
Ali Abed

This paper deals with the navigation of a mobile robot in unknown environment using artificial potential field method. The aim of this paper is to develop a complete method that allows the mobile robot to reach its goal while avoiding unknown obstacles on its path. An approach proposed is introduced in this paper based on combing the artificial potential field method with fuzzy logic controller to solve drawbacks of artificial potential field method such as local minima problems, make an effective motion planner and improve the quality of the trajectory of mobile robot.


Sign in / Sign up

Export Citation Format

Share Document