A Learning Method for Predicting the Binding Strength in RNA-Protein Complexes

2014 ◽  
Vol 644-650 ◽  
pp. 5291-5294
Author(s):  
Tong Wang ◽  
Jian Xin Xue ◽  
Tian Xia

Hydrogen bond and van der Waals interactions between protein and RNA are important. We have developed a set of algorithms for predicting RNA-Protein binding strength by analyzing hydrogen bond and van der Waals interactions between protein and RNA. Firstly, we must identify the RNA-Protein binding sites. In this study, we use features including Pseudo Position-Specific Score Matrix (PsePSSM) computed by PSI-BLAST and Dipeptide Composition (DC) as feature vectors. Then, the classifier is employed to identify the residues that interact with RNA in RNA-binding protein. Then, take into account the number of amino acids hydrogen bonding and van der Waals forces to any nucleotide, the binding strength is calculated. Finally, fuzzy sets method is adopted to predict the binding strength is strong or weak. Our experiments show that the above methods are used effectively to deal with this complicated problem of predicting RNA-protein binding strength.

2020 ◽  
Vol 44 (6) ◽  
pp. 2328-2338 ◽  
Author(s):  
Jianming Yang ◽  
Qinwei Yu ◽  
Fang-Ling Yang ◽  
Ka Lu ◽  
Chao-Xian Yan ◽  
...  

Triethylene diamine (DABCO) can interact with H2O and CO2 in air to form dimeric and trimeric complexes via hydrogen bond, tetrel bond as well as van der Waals interactions.


1993 ◽  
Vol 13 (10) ◽  
pp. 6547-6557 ◽  
Author(s):  
Y K Kwon ◽  
N B Hecht

The synthesis of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated during germ cell development by mRNA storage for about 7 days in the cytoplasm of differentiating spermatids. Two highly conserved sequences, the Y and H elements present in the 3' untranslated regions (UTRs) of all known mammalian protamine mRNAs, form RNA-protein complexes and specifically bind a protein of 18 kDa. Here, we show that translation of fusion mRNAs was markedly repressed in reticulocyte lysates supplemented with a mouse testis extract enriched for the 18-kDa protein when the mRNAs contained the 3' UTR of mouse protamine 2 (mP2) or the Y and H elements of mP2. No significant decrease was seen when the fusion mRNAs contained the 3' UTR of human growth hormone. The 18-kDa protein is developmentally regulated in male germ cells, requires phosphorylation for RNA binding, and is found in the ribonucleoprotein particle fractions of a testicular postmitochondrial supernatant. We propose that a phosphorylated 18-kDa protein plays a primary role in repressing translation of mP2 mRNA by interaction with the highly conserved Y and H elements. At a later stage of male gamete differentiation, the 18-kDa protein no longer binds to the mRNA, likely as a result of dephosphorylation, enabling the protamine mRNA to be translated.


1982 ◽  
Vol 60 (4) ◽  
pp. 490-496 ◽  
Author(s):  
Ross N. Nazar ◽  
Makoto Yaguchi ◽  
Gordon E. Willick

The ribosomal 5S RNA – protein complex appears to be an excellent model for studies on the evolution and structure of ribosomes. In eukaryotes this complex is composed of two components, the 5S rRNA and a single ribosomal protein which in yeast has a molecular weight of about 38 000. The primary protein-binding site is located in the 3′-end region of the 5S RNA together with a small portion of the 5′ end. The primary RNA-binding site appears to be situated in the C-terminal end of the protein (YL3 in yeast) but the binding specificity requires other structural elements in the N-terminal half of the molecule. When compared with prokaryotic 5S RNA – protein complexes, various physical and chemical studies suggest that the basic structure and interactions have been conserved in the course of evolution, but that the single larger eukaryotic 5S RNA binding protein has evolved through a fusion of genes for the multiple 5S RNA binding proteins in prokaryotes.


1993 ◽  
Vol 13 (10) ◽  
pp. 6547-6557
Author(s):  
Y K Kwon ◽  
N B Hecht

The synthesis of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated during germ cell development by mRNA storage for about 7 days in the cytoplasm of differentiating spermatids. Two highly conserved sequences, the Y and H elements present in the 3' untranslated regions (UTRs) of all known mammalian protamine mRNAs, form RNA-protein complexes and specifically bind a protein of 18 kDa. Here, we show that translation of fusion mRNAs was markedly repressed in reticulocyte lysates supplemented with a mouse testis extract enriched for the 18-kDa protein when the mRNAs contained the 3' UTR of mouse protamine 2 (mP2) or the Y and H elements of mP2. No significant decrease was seen when the fusion mRNAs contained the 3' UTR of human growth hormone. The 18-kDa protein is developmentally regulated in male germ cells, requires phosphorylation for RNA binding, and is found in the ribonucleoprotein particle fractions of a testicular postmitochondrial supernatant. We propose that a phosphorylated 18-kDa protein plays a primary role in repressing translation of mP2 mRNA by interaction with the highly conserved Y and H elements. At a later stage of male gamete differentiation, the 18-kDa protein no longer binds to the mRNA, likely as a result of dephosphorylation, enabling the protamine mRNA to be translated.


2005 ◽  
Vol 127 (33) ◽  
pp. 11827-11834 ◽  
Author(s):  
Elizabeth Barratt ◽  
Richard J. Bingham ◽  
Daniel J. Warner ◽  
Charles A. Laughton ◽  
Simon E. V. Phillips ◽  
...  

1996 ◽  
Vol 8 (5) ◽  
pp. 1092-1105 ◽  
Author(s):  
Erik M. D. Keegstra ◽  
Valentijn van der Mieden ◽  
Jan W. Zwikker ◽  
Leonardus W. Jenneskens ◽  
Arie Schouten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document