Self-Learning Control of Hydraulic Injection Molding Machine Based on Fuzzy Neural Network

2011 ◽  
Vol 66-68 ◽  
pp. 1117-1121
Author(s):  
Xiao Li ◽  
Xiao Hua Yang

Considering the nonlinear and time-variable characteristics of the injection cylinder system of hydraulic injection molding machine (HIMM), a self-learning control method based on fuzzy neural network is proposed in this paper. A self-learning controller was designed based on the combination of PID controller, fuzzy neural network controller, and learning mechanism. It was applied to the position control of injection cylinder. The experimental results show that the controller has the property of higher position tracking accuracy under the high speed and variable track movement of injection cylinder, compared with PID controller. The conclusion of this research can provide the beneficial reference for designing high speed and high precision HIMM.

2011 ◽  
Vol 467-469 ◽  
pp. 1645-1650
Author(s):  
Xiao Li ◽  
Xia Hong ◽  
Ting Guan

To solve the problem of the delay, nonlinearity and time-varying properties of PMA-actuated knee-joint rehabilitation training device, a self-learning control method based on fuzzy neural network is proposed in this paper. A self-learning controller was designed based on the combination of pid controller, feedforward controller, fuzzy neural network controller, and learning mechanism. It was applied to the isokinetic continuous passive motion control of the PMA-actuated knee-joint rehabilitation training device. The experiments proved that the self-learning controller has the properties of high control accuracy and unti-disturbance capability, comparing with pid controller. This control method provides the beneficial reference for improving the control performance of such system.


Author(s):  
Shenping Xiao ◽  
Zhouquan Ou ◽  
Junming Peng ◽  
Yang Zhang ◽  
Xiaohu Zhang ◽  
...  

Based on a single-phase photovoltaic grid-connected inverter, a control strategy combining traditional proportional–integral–derivative (PID) control and a dynamic optimal control algorithm with a fuzzy neural network was proposed to improve the dynamic characteristics of grid-connected inverter systems effectively. A fuzzy inference rule was established after analyzing the proportional, integral, and differential coefficients of the PID controller. A fuzzy neural network was applied to adjust the parameters of the PID controller automatically. Accordingly, the proposed dynamic optimization algorithm was deduced in theory. The simulation and experimental results showed that the method was effective in making the system more robust to external disruption owing to its excellent steady-state adaptivity and self-learning ability.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


Sign in / Sign up

Export Citation Format

Share Document