Sensor Fault Diagnosis for an UAV Control System Based on a Strong Tracking Kalman Filter

2014 ◽  
Vol 687-691 ◽  
pp. 270-274 ◽  
Author(s):  
Feng Tian ◽  
Jian Yang Zheng ◽  
Tong Zhang

The fault diagnosis of unmanned aerial vehicle (UAV) flight control system is an important research of UAV in health management. The sensor is the link which easiest to have problems of the flight control system. Making timely and accurate prediction of its faults is particularly important. A strong tracking Kalman Filter method for the sensor fault diagnosis of UAV flight control system was presented in this paper. The parameters of the system were extended to the state variables, the sensor fault observer was constructed, and the joint estimation of states and parameters of flight control system were gotten. The method can be used to real-time estimate the unmeasured states and time-varying parameters. The results of simulation experiments show that the method has a good real-time and accuracy in the sensor fault diagnosis of flight control system.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1350 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Wu ◽  
Xiong ◽  
Han ◽  
...  

The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity. Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the traditional model-based method; this paper proposes a UAV sensor diagnostic method based on data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor UAV flight system and solve the problems of over-fitting, limited generalization, and long training time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the shallow neural network, a large amount of off-line historical sample data obtained from the rotor UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and compared with the back propagation (BP) neural network model represented by the shallow neural network to verify the effectiveness of the proposed method in the paper.


Sign in / Sign up

Export Citation Format

Share Document