Design of Robust Nonlinear Optimal Controller for Underwater Vehicle to Move in Depth Channel Using Gradient Descent Method with Systematic Step Selection

2014 ◽  
Vol 704 ◽  
pp. 320-324
Author(s):  
Marzieh Ahmadi ◽  
Abolfazl Halvaei Niasar ◽  
Alireza Faraji ◽  
Hassan Moghbeli

This paper proposes the design of a robust nonlinear optimal controller to move the underwater vehicle in the depth channel using gradient descent method. A nonlinear model with six degrees of freedom (6-DOF) has been extracted for the underwater vehicle. To selection of the model and design of controller, conventional assumptions used for other controllers have not been considered and the developed controller can be implemented via at least assumptions. In presented control method, systematic step selection for solving of the algorithm has increased the rate of convergence significantly. The performances of the proposed robust controller for moving in depth channel with considering of parametric uncertainty for the model have been confirmed via some simulations. The results show the desirable performance of developed controller.

Author(s):  
Zribi Ali ◽  
Zaineb Frijet ◽  
Mohamed Chtourou

In this paper, based on the combination of particle swarm optimization (PSO) algorithm and neural network (NN), a new adaptive speed control method for a permanent magnet synchronous motor (PMSM) is proposed. Firstly, PSO algorithm is adopted to get the best set of weights of neural network controller (NNC) for accelerating the convergent speed and preventing the problems of trapping in local minimum. Then, to achieve high-performance speed tracking despite of the existence of varying parameters in the control system, gradient descent method is used to adjust the NNC parameters. The stability of the proposed controller is analyzed and guaranteed from Lyapunov theorem. The robustness and good dynamic performance of the proposed adaptive neural network speed control scheme are verified through computer simulations.


Sign in / Sign up

Export Citation Format

Share Document