Thermal Storage Technology on Solar Energy Wood Drying in China

2011 ◽  
Vol 71-78 ◽  
pp. 1191-1194
Author(s):  
Yan Lai Zhang ◽  
Chuan Mei Liu ◽  
Lei Luo ◽  
Hong Zhang ◽  
Li Jun Li ◽  
...  

The article mainly discusses the application situation on the solar energy wood drying in China, and summarizes its advantages and problems in the real application. Because solar energy is low in thermal density, intermittent, and it is affected by weather, these have very big limitation to use solar energy in the actual production process. Based on these, it is introduced that the advantages of thermal energy storage technology in wood drying process of solar energy, the main application modes and the actual application status. It summarizes the major thermal energy storage materials and their basic characteristics, discusses the application prospect and the importance on the latent heat storage technology in wood drying.

2021 ◽  
Author(s):  
Xu Qiao ◽  
Xianglei Liu ◽  
Qinyang Luo ◽  
Yanan Song ◽  
Haolei Wang ◽  
...  

Abstract Phase change materials (PCMs) are regarded as one of the most promising candidates for thermal energy storage due to possessing large energy storage densities and maintaining nearly a constant temperature during charging/discharging processes. However, the intrinsically low thermal conductivity of PCMs has become a bottleneck for rapid energy transport and storage. Here, we present a strategy to achieve ultrafast solar and thermal energy storage based on biomorphic SiC skeletons embedded NaCl-KCl molten salts. A record-high thermal conductivity of 116 W/mK is achieved by replicating cellular structure of oak wood, leading to an ultrafast thermal energy storage rate compared with molten salts alone. By further decorating TiN nanoparticles on SiC skeletons, the solar absorptance is enhanced to be as high as 95.63 % via exciting broadband plasmonic resonances. Excellent thermal transport and solar absorption properties enable designed composites to have bifunctional capabilities of harvesting both thermal energy and solar energy very rapidly. This work opens a new route for the design of bifunctional energy storage materials for ultrafast solar and thermal energy storage.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


2021 ◽  
pp. 116931
Author(s):  
Marcus Vinicius Gomes Paixão ◽  
Rafael da Silva Fernandes ◽  
Elessandre Alves de Souza ◽  
Rosangela de Carvalho Balaban

Sign in / Sign up

Export Citation Format

Share Document