solar absorptance
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 43)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Jacob Kleiman

A surface modification process was developed for the metalized Teflon coverings used for thermal protection of electronic equipment on the International Space Station [1]. The developed modification process of Teflon surfaces reduced substantially the specularity of Ag-Inconel coated Teflon thermal control films by changing the morphological appearance of their surfaces by ion-beam texturing in a controlled manner from a metallic-like and shiny to complete milky, white appearance without significantly affecting the thermal optical properties. A number of space hardware units covered with the textured Silver-Teflon were exposed to the open space environment between June 2002 and June 2006 and delivered back to Earth at the end of 2006. Remarkable performance was demonstrated by the treated Ag/Teflon, with the solar absorptance and total emittance values and the α/ε ratio remaining very close to the original values as measured before the flights [2]. In an attempt to protect further the textured surfaces of Teflon from possible erosion by atomic oxygen and VUV in LEO environment, an additional novel surface modification process was developed that created an SixOyCzFn type of structure on the treated surface. The textured Teflon samples before and after surface treatments were tested in a space simulator facility under a combined atomic oxygen/vacuum ultraviolet exposure.  A number of advanced characterization techniques were used to evaluate the properties of the modified films [3].


2021 ◽  
Vol 9 ◽  
Author(s):  
Kuang Shi ◽  
Huaiyu Liu ◽  
Lei Wang ◽  
Yu Bie ◽  
Yue Yang

With the increasing of global energy requirements and environmental problems, the use of solar thermal energy has attracted widespread attention. The selective solar absorption coating is the most important part of a solar thermal conversion device. At present, most of the coatings work well in a vacuum at a high temperature, while not stably in the air environment. Based on the high-temperature resistant and infrared-reflective properties of ITO, a multilayer film of SiO2/Si3N4/SiO2/ITO/Cr has been designed as a selective solar absorber. The genetic algorithm is applied to optimize the material and thickness selection for each layer. The results show that the optimized multilayer film could achieve a high solar absorptance up to 90% while keeping a relatively low infrared emittance around 50% for temperature change between 600°C and 900°C. All the materials composing this film have been tested before to be chemically stable at a high temperature up to 900°C in the air environment. It is also adaptive to different incident angles from 0° to 60°. The finite-difference time-domain method was also adopted to plot the energy density distribution for different wavelengths, which provided the underlying mechanism for the selective emission spectrum. The findings in this study would provide valuable guidance to design a low-cost selective solar absorption coating without the need for vacuum generation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Wang

Solar selective absorbing coatings (SSAC) harvest solar energy in the form of thermal energy. Traditional metal-rich SSACs like cermet-based coatings and semiconductor–metal tandems usually exhibit both a high solar absorptance and a low thermal emittance; however, metal nanoparticles can easily oxidize or diffuse at high temperature. Different from these SSACs, the all-ceramic SSACs can keep the superior optical performance at high temperatures by restraining oxidation and metal element diffusion. Besides, the facile and inexpensive fabrication of the all-ceramic SSACs makes it possible for commercial applications. These SSACs are usually a regular combination of transition-metal carbides and nitrides, which show great thermal stability and optical properties simultaneously. The structure design of the SSACs will affect the element diffusion, element oxidation, phase transition, as well as the spectral selectivity obviously. In this article, we review the structure designs of all-ceramic SSACs, and the optical properties and thermal stability of the all-ceramic SSACs in the latest literature are also compared. The purpose of this review is to identify the optimal structure design of the all-ceramic SSAC, and we also present an outlook for the structure design strategy for all-ceramic SSACs with high photothermal conversion efficiency and thermal stability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vahid Heydari ◽  
Zaker Bahreini ◽  
Majid Abdouss

Purpose The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings (TCCs) fix the thermal condition of the spacecraft acceptable for its components. This is possible by diffusely reflecting all effective ultraviolet (UV), visible (VIS) and near infrared (IR) (NIR) wavelengths of solar radiation and emmition of IR energy. The most commonly used TCCs have used ZnO as a pigment, but absorption of the UV light by ZnO pigment can change the ideal condition of these TCCs. The aim of his study is the using the porous ZnO particles as pigment to prevent the UV absorption. Design/methodology/approach To enhance the efficiency of these coatings, in the present study, nano-porous zinc oxide particles were synthesized and used as pigments for white TCCs. Findings The results revealed that the proposed TCC (TPZ), Thermal control coating with porous ZnO had better reflection (scattering) and emittance properties in comparison with the coating using ZnO as a pigment (TZ coating); so this coating had a solar absorptance value equal to 0.141, whereas this value for TZ was 0.150. Furthermore, TPZ showed higher thermal emittance (0.937) in comparison with TZ (0.9). These changes were because of the improvement in the refractive index, shape and surface area of the pigments. The general trend of the scattering coefficients for the prepared coating, as calculated from the Kubelka–Munk equation, showed that scattering was more efficient in the UV region, as compared with the TCC containing ZnO pigments. Originality/value This type of pigment for the first time is evaluated in TCCs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Wang ◽  
Zuoxu Wu ◽  
Yijie Liu ◽  
Shuaihang Hou ◽  
Zhikun Ren ◽  
...  

Exploring the spectrally selective absorbers with high optical performance and excellent thermal stability is crucial to improve the conversion efficiency of solar energy to electricity in concentrated solar power (CSP) systems. However, there are limited reports on the selective solar absorbers utilized at 900oC or above. Herein, we developed a selective absorption coating based on the ultra-high temperature ceramic ZrC and the quasi-optical microcavity (QOM) optical structure, and experimentally achieved the absorber via depositing an all-ceramic multilayer films on a stainless steel substrate by magnetron sputtering. The prepared multi-layer selective absorber demonstrates an excellent high solar absorptance of ∼0.964 due to the multi absorptance mechanisms in the QOM, and a relatively low thermal emittance of ∼0.16 (82°C). Moreover, the coating can survive at 900oC in vacuum for 100 h with a superior spectral selectivity of 0.96/0.143 (82°C) upon annealing, resulting from the introduction of ultra-high temperature ceramic ZrC in the QOM structure. Under the conditions of a stable operating temperature of 900°C and a concentration ratio of 1,000 suns, the calculated ideal conversion efficiency using this absorber can reach around 68%, exceeding most solar selective absorbers in previous reports.


2021 ◽  
pp. 174425912110454
Author(s):  
Miren Juaristi ◽  
Fabio Favoino ◽  
Tomás Gómez-Acebo ◽  
Aurora Monge-Barrio

Adaptive façades are a promising choice to achieve comfortable low-energy buildings. Their effective performance is highly dependent on the local boundary conditions of each application and on the way the dynamic properties are controlled. The evaluation of whole building performance through building performance simulation can be useful to understand the potential of different Adaptive opaque façades (AOF) in a specific context. This paper evaluates through dynamic simulations promising design solutions of AOF for a residential building use in six different climates. It quantifies the total delivered thermal energy of 15 typologies of AOFs which consist of alternative adaptation strategies: (i) variation of solar absorptance of the cladding, (ii) variation of the convective heat transfer of air cavities and (iii) adaptive insulation strategies. For the first time, it also quantifies the performance of AOF which combine more than one adaptation strategy. The results show that the variation of the heat transfer by means of Adaptive Insulation components has the most significant impact on the reduction of the thermal energy use. The variation of the solar absorptance has also a significant positive impact when reducing heating consumption, but only if this adaptation strategy is actively controlled and combined with Adaptive Insulation components.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2304
Author(s):  
V. Vinay K. Doddapaneni ◽  
Kijoon Lee ◽  
Tyler T. Colbert ◽  
Saereh Mirzababaei ◽  
Brian K. Paul ◽  
...  

This paper studied the feasibility of a new solution-processed method to manufacture black tungsten nanostructures by laser conversion of tungsten hexacarbonyl precursor on the Inconel 625 substrate under argon atmosphere at ambient pressure. The results show that sublimation of the precursor can be prevented if the decomposition temperature (>170 °C) is achieved using the laser heating method. Three different laser powers from 60–400 W were used to investigate the role of laser parameters on the conversion. It was found that lower laser power of 60 W resulted in a mixture of unconverted precursor and converted tungsten. Higher laser powers >200 W resulted in α-W (BCC) in one step without further heat treatment. Different oxygen concentrations from 0.5 ppm to 21 vol% were used in the laser canister to investigate the effect of oxygen concentration on the conversion. It was found that the hard vacuum (>10−4 torr) or hydrogen is not necessary to obtain α-W (BCC). The solar absorptance varied from 63–97%, depending on the amount of precursor deposited on the substrate and oxygen content in the laser canister. This solution-based laser conversion of tungsten precursor is a scalable method to manufacture tungsten coatings for high-temperature applications.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 371
Author(s):  
Ruijun Chen ◽  
Yaw-Shyan Tsay

This study aimed to evaluate the comprehensive percentage influence of input parameters on building energy and comfort performance by a new approach of sensitivity analysis (SA) and explore the most reliable and neutral sampling and sensitivity assessment method. The research combined 7 sampling methods with 13 SA methods to comprehensively integrate the percentage influence of 25 input parameters on building energy and comfort performance in 24 coastal cities of China. The results have found that the percentage influence of many important input parameters is affected by geographical position. Considering both energy and comfort performance of the building, the key parameters are heating setpoint, infiltration rate, cooling setpoint, roof U value, roof solar absorptance, window solar heat gain coefficient, equipment, and occupant density, all of which could comprehensively impact 70% of energy demand and comfort performance along the Chinese coastline. This is of great significance for policymakers to formulate relative building regulations. After comparing the F-test and the exceed percentage test, we recommended the Pearson with Quasi-random sampling method as the most reliable SA assessment method in building simulation, followed by the standardized regression coefficient in random sampling and Latin hypercube sampling methods, which can achieve data closest to the average value.


2021 ◽  
Author(s):  
Clifford K. Ho ◽  
Luis Gonz\xe1lez-Portillo ◽  
Kevin Albrecht
Keyword(s):  

Author(s):  
Nathan Schroeder ◽  
Kevin Albrecht

Abstract Falling particle receiver (FPR) systems are a rapidly developing technology for concentrating solar power applications. Solid particles are used as both the heat transfer fluid and system thermal energy storage media. Through the direct irradiation of the solid particles, flux and temperature limitations of tube-bundle receives can be overcome, leading to higher operating temperatures and energy conversion efficiencies. Candidate particles for FPR systems must be resistant to changes in optical properties during long term exposure to high temperatures and thermal cycling using highly concentrated solar irradiance. Five candidate particles, CARBOBEAD HSP 40/70, CARBOBEAD CP 40/100, including three novel particles, CARBOBEAD MAX HD 35, CARBOBEAD HD 350, and WanLi Diamond Black, were tested using simulated solar flux cycling and tube furnace thermal aging. Each particle candidate was exposed for 10 000 cycles (simulating the exposure of a 30-year lifetime) using a shutter to attenuate the solar simulator flux. Feedback from a pyrometer temperature measurement of the irradiated particle surface was used to control the maximum temperatures of 775 °C and 975 °C. Particle solar-weighted absorptivity and emissivity were measured at 2000 cycle intervals. Particle thermal degradation was also studied by heating particles to 800 °C, 900 °C, and 1000 °C for 300 hours in a tube furnace purged with bottled unpurified air. Here particle absorptivity and emissivity were measured at 100-hour intervals. Measurements taken after irradiance cycling and thermal aging were compared to measurements taken from as-received particles. WanLi Diamond Black particles had the highest initial value for solar weighted absorptance, 96%, but degraded up to 4% in irradiance cycling and 6% in thermal aging. CARBOBEAD HSP 40/70 particles currently in use in the prototype FPR at the National Solar Thermal Test Facility had an initial value of 95% solar absorptance with up to a 1% drop after irradiance cycling and 4% drop after 1000 °C thermal aging.


Sign in / Sign up

Export Citation Format

Share Document