Modeling the Near Infrared Light Propagation in Biological Tissues

2015 ◽  
Vol 713-715 ◽  
pp. 686-689
Author(s):  
Yu Xiang Wu ◽  
Min Fang Huang ◽  
Tao Song ◽  
Guo Dong Xu

The model of photon energy distribution in biological tissue has a very important significance in the diagnosis and treatment of biomedical area. The history and development of optical transmission and distribution in the biological tissue is outlined. The structural characteristics and optical properties of biological tissue are explained and discussed. To demonstrate the model of photon propagation in biological tissue, several methods about laser and biological tissue interaction of transmission theory are summarized and the physical meaning of the tissue optical parameters on is considered. On this basis, we simulated near infrared light distribution of the biological tissue with Monte Carlo methods and obtained meaningful results.

2016 ◽  
Vol 21 (7) ◽  
pp. 076012 ◽  
Author(s):  
Manish Bhatt ◽  
Kalyan R. Ayyalasomayajula ◽  
Phaneendra K. Yalavarthy

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252036
Author(s):  
Xiaoxue Fu ◽  
John E. Richards

Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.


Sign in / Sign up

Export Citation Format

Share Document