Preparation and Luminescent Properties of the La3+ Doped Tb3+-Hydroxyapatite

2014 ◽  
Vol 716-717 ◽  
pp. 32-35
Author(s):  
Wen Bin Liu ◽  
Adu ◽  
Yu Guang Lv ◽  
Li Li Yu ◽  
Yong Xiang Du ◽  
...  

In this paper, a rare earth metal terbium ion as the central metal ion, a nanohydroxyapatite powder of the lanthanum doped terbium was synthesis by precipitation with hydroxyapatite as ligand. The sample was characterized by infrared spectrum, fluorescence spectrum and X ray diffraction instrument, and the thermal properties and fluorescence properties, structure of powderes were discussed. A nanohydroxyapatite powder of the lanthanum doped terbium achieves the maximum luminous intensity, when the La3+ doping concentration of Tb3+ was HAP 5% (La3+ and Tb3+ mole fraction ratio) devices. Rare earth powder of the lanthanum doped terbium hydroxyapatite has the stability chemical properties, the luminescence properties and good biological activity, the rare earth powder has good luminescent properties can be used in preparation of a good light emitting device. At the same time a nanohydroxyapatite powder of the lanthanum doped terbium has good antibacterial property, can be used as antibacterial materials.

2015 ◽  
Vol 773-774 ◽  
pp. 672-676 ◽  
Author(s):  
Nurul Fadzilah Ab Rasid ◽  
Siti Nooraya Mohd Tawil ◽  
Che Ani Norhidayah ◽  
Mohd Zainizan Sahdan

Doping transition metal or rare-earth metal ion are one of the most popular topics in semiconductors. In this work, gadolinium (Gd) doped zinc oxide thin films was prepared using spin-coating technique with different concentrations in atomic percent (at.%). The influences of rare-earth ions doped into the zinc oxide films were studies. The effects on the physical and optical properties of the films were investigated by field emission scanning electron microscope, x-ray diffraction, atomic force microscopic and ultraviolet-visible spectrophotometer. It was found that the properties of zinc oxide can be tuned by changing the concentration physical and optical of Gd.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2007 ◽  
Vol 128 ◽  
pp. 207-212 ◽  
Author(s):  
Adam Worsztynowicz ◽  
Slawomir M. Kaczmarek ◽  
Elzbieta Tomaszewicz

New d-electron and rare-earth metal tungstates (CoRE2W2O10; CoRE4W3O16; Co2RE2W3O14 and NiRE2W2O10) were studied by the IR and EPR spectroscopy methods. The IR absorption bands with their maxima can be assigned to the symmetric and asymmetric stretching modes of W-O bonds in the joint of WO6 octahedra and also to the oxygen double WOOW bridge bonds. The wide, unstructured EPR powder spectra of these compounds and their temperature evolution have been analyzed and interpreted.


1997 ◽  
Vol 198 (5) ◽  
pp. 1561-1578 ◽  
Author(s):  
Hao Jiang ◽  
Jim Liang ◽  
John T. Grant ◽  
Weijie Su ◽  
Timothy J. Bunning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document