Risk Assessment of Safety Analysis of NPP Structures due to Earthquake Events

2015 ◽  
Vol 769 ◽  
pp. 235-240 ◽  
Author(s):  
Juraj Kralik

This paper presents the probabilistic safety assessment of nuclear power plant (NPP) in Slovakia due to earthquake event. The experiences from the deterministic and probabilistic seismic analyses of the structure resistance are mentioned. On the base of the geophysical and seismological monitoring of locality the peak ground acceleration was defined for the return period 104 years using the Monte Carlo simulations. The synthetic spectrum compatible accelerograms generated in program COMPACEL are presented in comparison with requirements of ASCE4/98 standard.

2016 ◽  
Vol 837 ◽  
pp. 214-221
Author(s):  
Juraj Kralik ◽  
Juraj Kralik Jr. ◽  
Maros Klabnik ◽  
Alzbeta Grmanova

This paper describes the nonlinear probabilistic analysis of the failure pressure of the shielding plate of the reactor box of the nuclear power plant under a high internal overpressure and temperature. The scenario of the hard accident in Nuclear power plant (NPP) and the methodology of the calculation of the fragility curve of the failure overpressure using the probabilistic safety assessment PSA 2 level is presented. The fragility curve of the failure pressure was determined using 45 probabilistic simulations using the response surface method (RSM) with the Central Composite Design (CCD) for 106 Monte Carlo simulations for each model and 5 level of the overpressure.


Author(s):  
James K. Liming ◽  
David H. Johnson ◽  
Andrew A. Dykes

Commercial nuclear power plant physical security has received much more intensive treatment and regulatory attention since September 11, 2001. In light of advancements made by the nuclear power industry in the field of probabilistic safety assessment (PSA) for its power plants over that last 30 years, and given the many examples of successful applications of risk-informed regulation at U. S. nuclear power plants during recent years, it may well be advisable to apply a “risk-informed” approach to security management at nuclear power plants from now into the future. In fact, plant PSAs developed in response to NRC Generic Letter 88-20 and related requirements are used to help define target sets of critical plant safety equipment in our current security exercises for the industry. With reasonable refinements, plant PSAs can be used to identify, analyze, and evaluate reasonable and prudent approaches to address security issues and associated defensive strategies at nuclear power plants. PSA is the ultimate scenario-based approach to risk assessment, and thus provides a most powerful tool in identifying and evaluating potential risk management decisions. This paper provides a summary of observations of factors that are influencing or could influence cost-effective or “cost-reasonable” security management decision-making in the current political environment, and provides recommendations for the application of PSA tools and techniques to the nuclear power plant operational safety response exercise (OSRE) process. The paper presents a proposed framework for nuclear power plant probabilistic terrorist risk assessment (PTRA) that applies these tools and techniques.


2021 ◽  
Author(s):  
Jaden C. Miller ◽  
Spencer C. Ercanbrack ◽  
Chad L. Pope

Abstract This paper addresses the use of a new nuclear power plant performance risk analysis tool. The new tool is called Versatile Economic Risk Tool (VERT). VERT couples Idaho National Laboratory’s SAPHIRE and RAVEN software packages. SAPHIRE is traditionally used for performing probabilistic risk assessment and RAVEN is a multi-purpose uncertainty quantification, regression analysis, probabilistic risk assessment, data analysis and model optimization software framework. Using fault tree models, degradation models, reliability data, and economic information, VERT can assess relative system performance risks as a function of time. Risk can be quantified in megawatt hours (MWh) which can be converted to dollars. To demonstrate the value of VERT, generic pressurized water reactor and boiling water reactor fault tree models were developed along with time dependent reliability data to investigate the plant systems, structures, and components that impacted performance from the year 1980 to 2020. The results confirm the overall notion that US nuclear power plant industry operational performance has been improving since 1980. More importantly, the results identify equipment that negatively or positively impact performance. Thus, using VERT, individual plant operators can target systems, structures, and components that merit greater attention from a performance perspective.


Sign in / Sign up

Export Citation Format

Share Document