Lightweight Design for Frame Structure of a Mini-Battery Electric Vehicle

2015 ◽  
Vol 778 ◽  
pp. 33-36
Author(s):  
Ting Ting Wang ◽  
Hai Zhu Zhang

A finite element model for the frame structure of mini-battery electric vehicle (mini-BEV) is established. The stress distributions of frame structure are calculated under three typical conditions. On this basis, the lightweight design of frame structure is presented, and then the new modified frame is carried out to take static analysis to validate the improvement program results show that the improved scheme is desirable.

2010 ◽  
Vol 26-28 ◽  
pp. 794-799
Author(s):  
Qian Wang ◽  
Zhi Peng Li ◽  
Dao Qiang Wang

The frame of blueberry harvesters is quite different from other vehicles. In this article, the design for whole frame structure is elaborated. According to the mechanical characteristics of the frame, materials are selected and manufacturability requirements are limited. Based on PRO/E software, accurate model of the frame of blueberry harvesters is established. And then, on the basis of ANSYS software, the finite element model of frame of blueberry harvesters is established to carry out static analysis on full-loaded and distortion working conditions. Results meet the strength requirements and displacement requirements, so it verifies the reasonableness of the design of frame.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


Author(s):  
Budy Notohardjono ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Richard Ecker

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer’s structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer’s structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure’s modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure’s modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe’s structural elements for improved dynamic response in the final physical certification test.


2014 ◽  
Vol 552 ◽  
pp. 24-28
Author(s):  
Zhen Yu Xu

Taking a certain urban model of electric vehicle as example, DC04 steel plate has replaced with high-strength steel plate BH340 for some parts of the car body on the purpose of reducing the car weight; at the same time, reduced the thickness of steel plate at the replacing spots, and then set the finite element model for the car body to compare its bending rigidities before and after replacement. On the premise of satisfying car body’s bending rigidity, it could make car body to reduce a weight of 23.2KG to satisfy the requirement for lightweight design.


2012 ◽  
Vol 472-475 ◽  
pp. 641-644
Author(s):  
Quan Cai Li ◽  
Cui Rong Wu

Bridge Fabricating System is one of the most widely used large-scale machinery equipment in construction fields like highway, railway both at home and abroad. Through structural analysis on the bridge fabricating system, and build a finite element model with ANSYS, we can form a found- ation for Static Analysis for it.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Gang Li ◽  
Zhaokun Nie ◽  
Yan Zeng ◽  
Jiacheng Pan ◽  
Zhenqun Guan

Abstract The bolted flange joint is an important source of nonlinearity in dynamical analysis of launch vehicles, which will lead to both longitudinal and transversal responses simultaneously subject to transversal dynamic loads, and may result in the failure of the connection structure. In this paper, a novel simplified dynamic modeling method via structural static analysis is proposed to simulate dynamical response of nonlinear bolted flange joints of launch vehicle, in which only static analysis of the detailed finite element model or static experiment is used for parameter identification of the model. Two types of nonlinear springs are designed for different tensile and compressive stiffness of the bolted flange joint, which affect longitudinal dynamic behaviour of the connection, and a shear spring is used to modify the transversal stiffness. The sections of launch vehicle are modeled as linear beams for efficiency. Effectiveness of the proposed modeling method is confirmed by a typical connection structure, bolted flange connected cylindrical shells, whose finite element models are verified with dynamic experiments. Superiority of the simplified dynamic model from the proposed method is demonstrated by comparing with the previous simplified model. The connection structures with different numbers of bolts are studied, and most of the dynamic responses calculated from the proposed model agree well with those from the finite element model. The coupling vibration of the connection structure is predicted successfully, in which longitudinal response of the structure is excited by the transversal load.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881345 ◽  
Author(s):  
Mingxuan Liang ◽  
Jianhong Hu ◽  
Shuqing Li ◽  
Zhigao Chen

This article is concerned with topology optimization of transmission gearbox under multiple working loads by taking dynamic performance as research object. First, the dynamic excitation model and finite element model are established, the vibration responses of the key points on gearbox are obtained by applying dynamic excitation on finite element model based on modal dynamic method, and the simulation responses are compared with testing results to validate finite element model. Finally, the gearbox structure is optimized by utilizing topology optimization method, and the lightweight model of transmission gearbox structure is redesigned. The dynamic performance indexes such as natural frequency are improved obviously, which indicates that the topology optimization method is very effective in optimizing dynamic performance of complex gearbox structure. The research has an important theoretical significance and reference value for lightweight design of transmission gearbox structure.


2011 ◽  
Vol 120 ◽  
pp. 81-84
Author(s):  
Jian Hua Wang ◽  
Jian Hua ◽  
Chao Li

Fatigue rupture is the major reason of crankshaft parts failure. Traditional fatigue analysis is fairly complicated and causes a great error. The finite element model of s195 engine crankshaft is created under SolidWorks environment, whose static analysis and fatigue analysis is carried out by using Simulation module. Also the vibration character of the crankshaft is calculated through modal analysis. Result shows the fatigue strength of the crankshaft is enough and it will not produce resonance in operation.


Sign in / Sign up

Export Citation Format

Share Document