Model of Power Factor Charge for Photovoltaic Generation System Based on its Contribution to Power Systems

2015 ◽  
Vol 781 ◽  
pp. 262-266
Author(s):  
Marut Hemsuree ◽  
Chanan Thiranan ◽  
Surachai Chaitusaney

This paper proposes a power factor charge model, which considers the operation of photovoltaic generation system (PVGS). The proposed model is aimed to encourage Very Small Power Producer (VSPP) to have contribution, by its operation, to voltage regulation in the connecting power system. The proposed model allows PVGS has to either consume or supply reactive power for maintaining system voltages to be within an acceptable range. In the financial part, consuming or supplying reactive power may cause the power factor charge to be increased while the opportunity for generating active power (PVGS income) to be reduced. The proposed model is tested in impact of PVGS to utility grid, and the results show that PVGS can have contribution to grid support.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4241 ◽  
Author(s):  
Ndamulelo Tshivhase ◽  
Ali N. Hasan ◽  
Thokozani Shongwe

Recently, the awareness of the severe consequences of greenhouse gases on the environment has escalated. This has encouraged the world to reduce the usage of fossil fuels for power generation and increase the use of cleaner sources, such as solar energy and wind energy. However, the conventional power system itself was designed as a passive power system, in which power generation is centralised, and power flows from substations towards the loads. Decentralised renewable energy sources, also called distributed generators, were introduced to create an active power system in which power generation can occur anywhere in the power system. Decentralised power generation creates challenges for the conventional power system, such as voltage fluctuations, high voltage magnitudes, reverse power flow, and low power factor. In this paper, an adaptive control system that coordinates different distributed generators for voltage regulation and power factor correction is introduced and designed. The control system will decrease the total reactive power that flows in the transmission network through a reactive power exchange between distributed generators. Therefore, power factor will improve, power system losses will reduce, and the total apparent power on lines will reduce, giving more room to active power to flow. The results obtained showed that the control system is effective in regulating voltage and improving the power factor when multiple distributed generators are connected.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7510
Author(s):  
Akinyemi Ayodeji Stephen ◽  
Kabeya Musasa ◽  
Innocent Ewean Davidson

Renewable Distributed Generation (RDG), when connected to a Distribution Network (DN), suffers from power quality issues because of the distorted currents drawn from the loads connected to the network over generation of active power injection at the Point of Common Coupling (PCC). This research paper presents the voltage rise regulation strategy at the PCC to enhance power quality and continuous operation of RDG, such as Photovoltaic Arrays (PVAs) connected to a DN. If the PCC voltage is not regulated, the penetration levels of the renewable energy integration to a DN will be limited or may be ultimately disconnected in the case of a voltage rise issue. The network is maintained in both unity power factor and voltage regulation mode, depending on the condition of the voltage fluctuation occurrences at the PCC. The research investigation shows that variation in the consumer’s loads (reduction) causes an increase in the power generated from the PVA, resulting in an increase in the grid current amplitude, reduction in the voltage of the feeder impedance and an increase in the phase voltage amplitude at the PCC. When the system is undergoing unity power factor mode, PCC voltage amplitude tends to rises with the loads. Its phase voltage amplitude rises above an acceptable range with no-loads which are not in agreement, as specified in the IEEE-1547 and Southern Africa grid code prerequisite. Incremental Conduction with Integral Regulator bases (IC + PI) are employed to access and regulate PVA generation, while the unwanted grid current distortions are attenuated from the network using an in-loop second order integral filtering circuit algorithm. Hence, the voltage rise at the PCC is mitigated through the generation of positive reactive power to the grid from the Distribution Static Compensator (DSTATCOM), thereby regulating the phase voltage. The simulation study is carried out in a MATLAB/Simulink environment for PVA performance.


2013 ◽  
Vol 2 (1) ◽  
pp. 78-100 ◽  
Author(s):  
Hassan Bevrani ◽  
Mehrdad Gholami ◽  
Neda Hajimohammadi

Economical harvesting of electrical energy on a large scale considering the environmental issues is a challenge. As a solution, Microgrids (MGs) promise to facilitate the widely penetration of renewable energy sources (RESs) and energy storage devices into the power systems, reduce system losses and greenhouse gas emissions, and increase the reliability of the electricity supply to the customers. Although the concept of MG is already established, the control strategies and energy management systems for MGs which cover power interchange, system stability, frequency and voltage regulation, active and reactive power control, islanding detection, grid synchronization, following contingencies and emergency conditions are still under development. Like a conventional power system, a Micro-grid (MG) needs emergency control and protection schemes to have secure and stable operation. Since MG can operate in both grid-connected and islanded mode, in addition to the control loops and protection schemes, extra issues must be considered. Transition between two operation modes requires an extra control plan to eliminate and stabilize transients due to mode changing. This paper presents an overview of the key issues and new challenges on emergency control and protection plans in the MG systems. The most important emergency control and protection schemes such as load shedding methods that have been presented over the past years are summarized.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


Author(s):  
Allie E. Auld ◽  
Jack Brouwer ◽  
Scott Samuelsen ◽  
Keyue M. Smedley

The challenges associated with incorporating a large amount of distributed generation (DG), including fuel cells, into a radial distribution feeder are examined using a Matlab/Simulink™ model. Two generic distribution feeder models are used to investigate possible scenarios where voltage problems may occur. Modern inverter topologies make ancillary features, such as on-demand reactive power generation/consumption economical to include, which expands the design space across which DG can function in the distribution system. The simulation platform enables testing of the following local control goals: DG connected with unity power factor, DG and load connected with unity power factor, DG connected with local voltage regulation (LVR), and DG connected with real power curtailment. Both the LVR and curtailment strategies can regulate the voltage of the simplest circuit case, but the circuit utilizing a substation with load drop compensation has no universal solution. Even DG with a penetration level around 10% of rated circuit power can cause overvoltage problems with load drop compensation. This implies that some degree of communication will be needed to reliably install a large amount of DG on a distribution circuit.


Author(s):  
Aniagboso John Onah

In an electric utility network, the occurrence of voltage depression on transmission and distribution lines is due to the flow of reactive power. It is desirable to regulate the voltage within a narrow range of its nominal value (±5% range around their nominal values). Thus, reactive power control is necessary so as to control dynamic voltage swings under various system conditions and thereby improve the power system transmission and distribution performance. A fast acting Static Compensator (STATCOM) is required to produce or absorb reactive power so as to provide the necessary reactive power balance in transmission and distribution system. Modern reactive power compensation employs voltage source inverter (VSI). In this paper, a static compensator based on three-phase, three-level voltage source inverter (VSI) was investigated. The paper is intended to show how this STATCOM can be used to improve the ac system power factor and voltage regulation, and hence improve the performance of the transmission and distribution lines. Application of this STATCOM to a transmission system achieved unity power factor, thereby reducing the active power loss by 38.7% and consequently decreasing power costs, as well as increasing transmission system capacity. The presence of the STATCOM also reduced the reactive power flowing on the line from 2.79 MVAr to 1745VAr – resulting in optimum voltage regulation at the load bus. The reactive elements (L and C) are small in size.


Author(s):  
V. Lakshmi Devi ◽  
T. Phanindra

Electrical distribution system suffers from various problems like reactive power burden, unbalanced loading, voltage regulation and harmonic distortion. Though DSTATCOMS are ideal solutions for such systems, they are not popular because of the cost and complexity of control involved. Phase wise balanced reactive power compensations are required for fast changing loads needing dynamic power factor correcting devices leading to terminal voltage stabilization. Static Var Compensators (SVCs) remain ideal choice for such loads in practice due to low cost and simple control strategy. These SVCs, while correcting power factor, inject harmonics into the lines causing serious concerns about quality of the distribution line supplies at PCC. This paper proposes to minimize the harmonics injected into the distribution systems by the operation of TSC-TCR type SVC used in conjunction with fast changing loads at LV distribution level. Fuzzy logic system and ANN are going to be used solve this nonlinear problem, giving optimum triggering delay angles used to trigger switches in TCR. The scheme with Artificial Neural Network (ANN) is attractive and can be used at distribution level where load harmonics are within limits. Verification of the system and by using mat lab / simulink with proper modeling.


Author(s):  
Majid Abdulhameed Abdulhy Al-Ali ◽  
V. Yu. Kornilov ◽  
A. G. Gorodnov

Annotation: There are various types of electrical equipment used in the extraction of oil at the Rumaila field, with an average voltage of 11 kV and a low voltage of 0.4 kV. The most common elements in this class are transformers and reactors, engines and gas discharge lamps. All of this equipment consumes reactive power and reduces the value of the power factor. (Power factor is the ratio of kW to kVA). The closer the power factor to the maximum possible value of 1, the greater the benefit for the consumer and supplier. In case of low power factor, the current will be increased, and this high current will lead to (large line losses, an increase in the nominal total power of kVA and overhaul dimensions of electrical equipment, deterioration in voltage regulation process and an increase in voltage drop, a decrease in efficiency).Power factor improvement allows the use of smaller transformers, switchgear and cables, etc. as well as reducing power losses and voltage drop in an installation. Improving the power factor of an installation requires a bank of capacitors which acts as a source of reactive energy. These arrangements provide reactive energy compensation. In Rumila, An improvement of the power factor of an installation presents several technical and economic advantages, notably in the reduction of electricity bills, we save (685.854.007 Iraqi Dinar= 550.000 $) for one month . All this work takes 6 to 12 month.


Sign in / Sign up

Export Citation Format

Share Document