Loading Performances of Low-Power Low-Speed Single-Phase Induction Generator with Energy Saving Lamps

2015 ◽  
Vol 785 ◽  
pp. 290-294 ◽  
Author(s):  
Hari Santoso ◽  
Rini Nur Hasanah ◽  
I.N.G. Wardana ◽  
Budiono Mismail

The increasing use of energy saving lamps provides additional benefits to the application of low-power low-speed self-excited induction generators resulted from capacitor motor modification. Reactive power requirement of the generator can be provided from the capacitive nature of the lamps, while at the same time it is delivering active power to loads. Any loading change will automatically increase or reduce reactive power supply to generator. Results of experiments show that low-power low-speed single-phase self-excited induction generator is more robust and suitable for this kind of loads. Generator does not lose its voltage when experiencing abrupt change of loads. This robustness makes the generator suitable for the use in low-capacity hydropower generation in remote areas being commonly not covered by national electricity grid.

Author(s):  
Aleksander Leicht ◽  
Krzysztof Makowski

Purpose The purpose of the paper is to present an analysis of an influence of shape and material of rotor bars on the process of self-excitation and performance characteristics of single-phase, self-excited induction generator (SP-SEIG). Design/methodology/approach The presented analysis is based on the results of transient simulations of SP-SEIG performed with the use of field-circuit model of the machine. Four various shapes of the rotor bars and two different conductor materials were investigated. The results for the base model with rounded trapezoidal rotor slots were validated by measurements. Findings An improvement of the performance characteristics – the extension of the stable operating range of the generator – was obtained for rectangular copper rotor bars. The improvement is the result of strong skin effect in the squirrel rotor cage. Application of round rotor slots results in shorter time of voltage build-up during the self-excitation of the generator caused by less apparent deep bar effect in round bars. Originality/value The originality of the paper is the application of the copper rotor cage in the single-phase, self-excited induction generator. Its use is beneficial, as it allows for extension of the range of stable operating range. The results may be used for designing new constructions of the single-phase, self-excited induction generators, as well as the constructions based on general purpose single-phase induction motors.


2018 ◽  
Author(s):  
Agus Supardi ◽  
Aris Budiman ◽  
Dwi Aji Saputro ◽  
Anhar Tri Atmanto

2011 ◽  
Vol 354-355 ◽  
pp. 989-992
Author(s):  
An Lin

Squirrel-cage induction generator (SCIG) has been widely utilized in large wind farms in China. However, the large wind farm composed of induction generators will cause obvious power system stability problems due to the dependency on reactive power. Doubly-fed induction generator (DFIG) has excellent dynamic characteristics of wind farm operations. With the increasing of wind power penetration in power systems, more and more wind farms use both SCIG and DFIG. This paper firstly analyzes the the dynamic characteristic of wind farm on power systems, especially in terms of the voltage stability. Then the interaction between the SCIGs and DFIGs is also investigated. A detailed simulation model of wind farms is presented by means of MATLAB. The simulation results demonstrate that the DFIG applications will improve the voltage stability of the wind farm largely and the low voltage ride through characteristics of SCIG to some extend.


2021 ◽  
Vol 57 (1) ◽  
pp. 64-79
Author(s):  
Jarosław Tępiński

Purpose: The purpose of the article is to present a reactive power compensation for small hydropower plants with an induction generator. The classic compensation with capacitors is discussed and its improvement is proposed. Instead of capacitors, a three level power electronic converter connected in parallel to the induction generator can be used to provide reactive power compensation. The purpose of the paper is to present the developed structure of an active compensator and its control method. The developed control method was verified on a laboratory stand. The project and the methods: As part of research, an active compensator was built as a three-level power electronic converter in topology with Neutral Point Clamped. Laboratory tests of a converter compensator were carried out on a stand equipped with an induction generator with a power of 7.5 kW. Laboratory system measurements were made using a power analyzer and an oscilloscope. Results: A control structure of an active compensator based on a voltage-oriented method was presented and discussed. The operation of the con- verter compensator has been verified on a laboratory stand equipped with a 7.5 kW induction generator. The compensator current reduces the reactive (inductive) component of the current consumed from a power grid to a value equal to zero. The reactive power compensator ensures that the tgφ power factor is maintained at a set value of zero, which corresponds to the total compensation of inductive reactive power consumed by an induction generator working in a hydropower plant. Operation of the active compensator did not cause a significant increase in the harmonic content in the current consumed from the power grid. Conclusions: The paper presents the issues regarding reactive power compensation in hydropower plants with induction generators. Commonly used capacitor compensation has been covered and as a result, it is proposed to replace it with power electronics converter compensation of reactive power connected in parallel induction generators. Active compensator provides compensation for the entire reactive power consumed by the induction generator. The use of the converter compensator of reactive power significantly contributes to the reduction of costs for reactive power incurred by the owners of hydropower plants. The reactive power compensator also has a positive impact on the operation of the entire power grid, power losses from the reactive component of the current on the impedances of power grid components are limited. Keywords: renewable source of electricity, reactive power, active compensator, induction generator Type of article: original scientific article


Author(s):  
Ricardo Q. Machado ◽  
Amílcar F. Q. Gonçalves ◽  
Simone Buso ◽  
José A. Pomilio

This paper proposes a solution for the direct connection of a three-phase induction generator to a single-phase feeder. This high power quality system is intended to be used in micro-hydro power plants applications with control of the water flow. It is employed to maintain the speed of the induction generator greater than its synchronous value. The difference between the generated power and the power consumed by the local load flows through the single-phase feeder. The power flow control is provided by a three-phase PWM inverter that additionally guarantees the local power quality. A system with good power quality must have sinusoidal and constant amplitude voltages, fixed frequency operation, balanced induction generator voltages and currents, harmonics and reactive power compensation. The paper describes the inverter control strategy, presents design criteria of the controllers, and shows experimental results.


Author(s):  
Hari Santoso ◽  
Rini Nur Hasanah ◽  
Budiono Mismail ◽  
I Nyoman Gde Wardana
Keyword(s):  

Author(s):  
Ahmed J. Ali ◽  
Mohammed Y. Suliman ◽  
Laith A. Khalaf ◽  
Nashwan S. Sultan

Self-Excited induction generators (SEIG) display a low voltage and frequency regulation due to variable applied load and input rotation speed. Current work presents a simulation and performance analysis of a three-phase wind-driven, SEIG connect to a three-phase load. In addition, an investigation of the dynamic operation of the induction generator from starting steady state until no-load operation. It is assumed that the input mechanical power is constant where the rotor of the SEIG rotates at a constant speed. The value of the excitation capacitance which is necessary to the operation of the induction generator also computed to ensure a smooth and self-excitation starting. The output voltage of the generator is adjusted by varying the reactive power injected by STATCOM. A 3-phase IGBT voltage source inverter with a fuel cell input supply is connected as STATCOM which is used to compensate for the reduction in the supply voltage and its frequency due to variation occurred in the applied loads. This work includes introducing a neuro-fuzzyy logic controller to enhance the performance of the SEIG by regulation the generated voltage and frequency The dynamic model of SEIG with STATCOM and loads are implemented using MATLAB/SIMULINK


Author(s):  
Fransisco Danang Wijaya ◽  
Hartanto Prabowo

Single-phase induction generator is very suitable to be used in the typical loads which only need a single-phase power supply with small power capacity requirement, such as diesel engine, picohydro or small wind plant. It has some advantages such as rugged, effective cost, maintenance free and require no external excitation. However, it has inductive characteristic which makes poor voltage regulation. This paper proposed a shunt reactive compensator called SVC-MERS which can provide a variable reactive power to maintain the generator voltage despite of load variations. The experiment was conducted on single-phase two winding induction generator coupled by a three-phase induction motor which serves as the prime mover. SVC-MERS and the load are connected in shunt to the main winding, while the excitation capacitor was connected to the auxiliary winding. The experimental results showed that SVC-MERS can improve voltage regulation and substantially enhanced steady state loading limit.


2013 ◽  
Vol 768 ◽  
pp. 143-150 ◽  
Author(s):  
K. Subramanian ◽  
S.P. Sabberwal

This paper describes a laboratory model of a wind energy conversion scheme (WECS) using conventional cage rotor type induction motor of 3Hp, 3-Ø, 415V, 4.9A, 1440 rpm. A 220V, 20A separately excited motor coupled with the induction motor emulates the wind turbine characteristics. A 3-Ø, 415 V capacitor bank of 150μF is connected in each phase across the stator terminals of the machine for its self-excitation. As soon as rotor speed exceeds synchronous speed of the machine, it will generate electrical power and reach its rated value. This arrangement is called as self-excited induction generator (SEIG). To control the frequency of generated voltage, load-balancing technique is considered by using a three-phase diode rectifier powering to an additional load (dump load) through a d.c chopper circuit. Static reactive volt-ampere compensator (STATCOM) is used to mitigate the load reactive power requirement indeed magnetic reactance changes in the machine. Owing to cost optimization of STATCOM, additional reactor is connected across the stator terminals of the SEIG. Simulation study is completed using power system toolbox Matlab / Simulink version9.0. Experimental and simulation results are presented.


2019 ◽  
Vol 63 (3) ◽  
pp. 178-190 ◽  
Author(s):  
Ibrahim Yaichi ◽  
Abdelhafid Semmah ◽  
Patrice Wira ◽  
Youcef Djeriri

This paper presents direct power control (DPC) strategies using the super-twisting sliding mode control (STSMC) applied to active and reactive power control of a doubly-fed induction generator (DFIG) supplied by a space vector modulation inverter for wind turbine system. Then, a control STSMC-DPC and SVM strategies are applied. The active and reactive powers that are generated by the DFIG will be decoupled by the orientation of the stator flux and controlled by super-twisting sliding mode control. Its simulated performance is then compared with conventional sliding mode control. The test of robustness of the controllers against machine parameters uncertainty will be tackled, and the simulations will be presented. Simulation results of the proposed controller (SMC-DPC) and (STSMC-DPC) scheme are compared for various step changes in the active and reactive power. This approach super-twisting sliding mode control is validated using the Matlab/Simulink software and the results of the simulation can prove the excellent performance of this control in terms of improving the quality of the energy supplied to the electricity grid.


Sign in / Sign up

Export Citation Format

Share Document